A class of congruences in partial Abelian semigroups

被引:3
作者
Yu, ZJ
Wu, JD [1 ]
Lu, SJ
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ City Coll, Hangzhou 310015, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum logics; partial Abelian semigroups; congruences;
D O I
10.1007/s10582-006-0037-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, by basing on the special morphism of Habil, we introduce and study a class of congruences in partial Abelian semigroups and obtain some interesting properties.
引用
收藏
页码:1535 / 1539
页数:5
相关论文
共 10 条
[1]  
[Anonymous], FDN PHYS
[2]   Some ideal lattices in partial Abelian monoids and effect algebras [J].
Chevalier, G ;
Pulmannová, S .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2000, 17 (01) :75-92
[3]   Quotients of partial abelian monoids [J].
Gudder, S ;
Pulmannova, S .
ALGEBRA UNIVERSALIS, 1997, 38 (04) :395-421
[4]  
HABIL E, 1997, MATH SLOVACA, V47, P405
[5]   Notes on R1-ideals in partial abelian monoids [J].
Jenca, G .
ALGEBRA UNIVERSALIS, 2000, 43 (04) :307-319
[6]   Quotients of partial abelian monoids and the Riesz decomposition property [J].
Jenca, G ;
Pulmannová, S .
ALGEBRA UNIVERSALIS, 2002, 47 (04) :443-477
[7]  
Kopka F., 1994, Mathematica Slovaca, V44, P21
[8]   Congruences in partial Abelian semigroups [J].
Pulmannova, S .
ALGEBRA UNIVERSALIS, 1997, 37 (01) :119-140
[9]   PARTIAL ABELIAN SEMIGROUPS [J].
WILCE, A .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) :1807-1812
[10]  
Wilce A., 1998, MATH SLOVACA, V48, P117