Total p-differentials on schemes over Z/p2

被引:5
作者
Dupuy, Taylor [1 ]
Katz, Eric [2 ]
Rabinoff, Joseph [3 ]
Zureick-Brown, David [4 ]
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05405 USA
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
[4] Emory Univ, Dept Math & CS, 400 Dowman Dr,W401, Atlanta, GA 30322 USA
基金
欧洲研究理事会;
关键词
Witt vectors; Algebraic geometry over finite fields; Frobenius lifts; Arithmetic differential equations;
D O I
10.1016/j.jalgebra.2019.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a scheme X defined over the length 2 p-typical Witt vectors W-2(k) of a characteristic p field, we introduce total p-differentials which interpolate between Frobenius-twisted differentials and Buium's p-differentials. They form a sheaf over the reduction X-0, and behave as if they were the sheaf of differentials of X over a deeper base below W-2(k). This allows us to construct the analogues of Gauss-Manin connections and Kodaira Spencer classes as in the Katz-Oda formalism. We make connections to Frobenius lifts, Borger-Weiland's biring formalism, and Deligne-Illusie classes. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:110 / 123
页数:14
相关论文
共 13 条
[1]   Plethystic algebra [J].
Borger, J ;
Wieland, B .
ADVANCES IN MATHEMATICS, 2005, 194 (02) :246-283
[2]  
Borger J, 2009, ARXIV09063146
[3]   Arithmetic analogues of derivations [J].
Buium, A .
JOURNAL OF ALGEBRA, 1997, 198 (01) :290-299
[4]   DIFFERENTIAL CHARACTERS OF ABELIAN-VARIETIES OVER P-ADIC FIELDS [J].
BUIUM, A .
INVENTIONES MATHEMATICAE, 1995, 122 (02) :309-340
[5]   Geometry of p-jets [J].
Buium, A .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (02) :349-367
[6]  
Buium A, 2005, ARITHMETIC DIFFERENT, V118
[7]   P2 MODULES AND DECOMPOSITION OF THE DERHAM COMPLEX [J].
DELIGNE, P ;
ILLUSIE, L .
INVENTIONES MATHEMATICAE, 1987, 89 (02) :247-270
[8]  
Dupuy Taylor, PREPRINT
[9]  
Dupuy Taylor, 2018, ARXIV180400228
[10]  
Dupuy Taylor, 2017, ARXIV170708714