Dynamics near the critical point: The hot renormalization group in quantum field theory

被引:12
作者
Boyanovsky, D [1 ]
de Vega, HJ
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[2] Univ Paris 06, LPTHE, F-75252 Paris 05, France
[3] Univ Paris 07, F-75252 Paris 05, France
关键词
D O I
10.1103/PhysRevD.65.085038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The perturbative approach to the description of long-wavelength excitations at high temperature breaks down near the critical point of a second order phase transition. We study the dynamics of these excitations in a relativistic scalar field theory at and near the critical point via a renormalization group approach at high temperature and an epsilon expansion in d=5-epsilon space-time dimensions. The long-wavelength physics is determined by a nontrivial fixed point of the renormalization group. At the critical point we find that the dispersion relation and width of quasiparticles of momentum p are omega(p)similar top(z) and Gamma(p)similar to(z-1)omega(p), respectively, and the group velocity of quasiparticles v(g)similar top(z-1) vanishes in the long-wavelength limit at the critical point. Away from the critical point for Tgreater than or similar toT(c) we find omega(p)similar toxi(-z)[1+(pxi)(2z)](1/2) and Gamma(p)similar to(z-1)omega(p)(pxi)(2z)/[1+(pxi)(2z)] with xi the finite temperature correlation length xiproportional to\T-T-c\(-nu). The new dynamical exponent z results from anisotropic renormalization in the spatial and time directions. For a theory with O(N) symmetry we find z=1+epsilon(N+2)/(N+8)(2)+O(epsilon(2)). This dynamical critical exponent describes a new universality class for dynamical critical phenomena in quantum field theory. Critical slowing down, i.e., a vanishing width in the long-wavelength limit, and the validity of the quasiparticle picture emerge naturally from this analysis.
引用
收藏
页码:850381 / 8503826
页数:26
相关论文
共 62 条
[31]   THEORY OF 2-DIMENSIONAL QUANTUM HEISENBERG ANTIFERROMAGNETS WITH A NEARLY CRITICAL GROUND-STATE [J].
CHUBUKOV, AV ;
SACHDEV, S ;
YE, J .
PHYSICAL REVIEW B, 1994, 49 (17) :11919-11961
[32]  
Csernai L P, 1994, INTRO RELATIVISTIC H
[33]  
Das A., 1997, FINITE TEMPERATURE F
[34]   DIMENSIONAL RENORMALIZATION [J].
DEVEGA, HJ ;
SCHAPOSN.FA .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (11) :1998-2000
[35]  
GRADSHTEYN IS, 1980, TBLE INTEGRALS SERIE
[36]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[37]   Generic rules for high temperature dimensional reduction and their application to the Standard Model [J].
Kajantie, K ;
Laine, M ;
Rummukainen, K ;
Shaposhnikov, M .
NUCLEAR PHYSICS B, 1996, 458 (1-2) :90-136
[38]  
Kapusta J.I., 1989, Cambridge Monographs on Mathematical Physics
[39]  
KARSCH F, 2001, 40 INT U THEOR PHYS
[40]  
Le Bellac M., 1996, THERMAL FIELD THEORY