Dynamics near the critical point: The hot renormalization group in quantum field theory

被引:12
作者
Boyanovsky, D [1 ]
de Vega, HJ
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[2] Univ Paris 06, LPTHE, F-75252 Paris 05, France
[3] Univ Paris 07, F-75252 Paris 05, France
关键词
D O I
10.1103/PhysRevD.65.085038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The perturbative approach to the description of long-wavelength excitations at high temperature breaks down near the critical point of a second order phase transition. We study the dynamics of these excitations in a relativistic scalar field theory at and near the critical point via a renormalization group approach at high temperature and an epsilon expansion in d=5-epsilon space-time dimensions. The long-wavelength physics is determined by a nontrivial fixed point of the renormalization group. At the critical point we find that the dispersion relation and width of quasiparticles of momentum p are omega(p)similar top(z) and Gamma(p)similar to(z-1)omega(p), respectively, and the group velocity of quasiparticles v(g)similar top(z-1) vanishes in the long-wavelength limit at the critical point. Away from the critical point for Tgreater than or similar toT(c) we find omega(p)similar toxi(-z)[1+(pxi)(2z)](1/2) and Gamma(p)similar to(z-1)omega(p)(pxi)(2z)/[1+(pxi)(2z)] with xi the finite temperature correlation length xiproportional to\T-T-c\(-nu). The new dynamical exponent z results from anisotropic renormalization in the spatial and time directions. For a theory with O(N) symmetry we find z=1+epsilon(N+2)/(N+8)(2)+O(epsilon(2)). This dynamical critical exponent describes a new universality class for dynamical critical phenomena in quantum field theory. Critical slowing down, i.e., a vanishing width in the long-wavelength limit, and the validity of the quasiparticle picture emerge naturally from this analysis.
引用
收藏
页码:850381 / 8503826
页数:26
相关论文
共 62 条
[1]   Classical approximation for time-dependent quantum field theory: Diagrammatic analysis for hot scalar fields [J].
Aarts, G ;
Smit, J .
NUCLEAR PHYSICS B, 1998, 511 (1-2) :451-478
[2]   Finiteness of hot classical scalar field theory and the plasmon damping rate [J].
Aarts, G ;
Smit, J .
PHYSICS LETTERS B, 1997, 393 (3-4) :395-402
[3]   RENORMALIZATION-GROUP APPROACH TO ANTIFERROMAGNETIC CRITICAL BEHAVIOR [J].
ALESSANDRINI, VA ;
VEGA, HJD ;
SCHAPOSNIK, F .
PHYSICAL REVIEW B, 1974, 10 (09) :3906-3912
[4]   CRITICAL BEHAVIOR OF A 2-LATTICE MODEL OF ANTIFERROMAGNETIC PHASE-TRANSITIONS [J].
ALESSANDRINI, VA ;
DEVEGA, HJ ;
SCHAPOSNIK, F .
PHYSICAL REVIEW B, 1975, 12 (11) :5034-5042
[5]  
Amit D. J., 1984, FIELD THEORY RENORMA
[6]  
[Anonymous], UNPUB
[7]   INFRARED SINGULARITIES AND MASSIVE FIELDS [J].
APPELQUIST, T ;
CARAZZONE, J .
PHYSICAL REVIEW D, 1975, 11 (10) :2856-2861
[8]  
Arnold P, 1997, PHYS REV D, V55, P7760, DOI 10.1103/PhysRevD.55.7760
[9]   EFFECTIVE POTENTIAL AND 1ST-ORDER PHASE-TRANSITIONS - BEYOND LEADING ORDER [J].
ARNOLD, P ;
ESPINOSA, O .
PHYSICAL REVIEW D, 1993, 47 (08) :3546-3579
[10]   3-LOOP FREE-ENERGY FOR PURE GAUGE QCD [J].
ARNOLD, P ;
ZHAI, CX .
PHYSICAL REVIEW D, 1994, 50 (12) :7603-7623