Finite time singularities for the free boundary incompressible Euler equations

被引:79
作者
Castro, Angel [1 ,2 ,3 ]
Cordoba, Diego [4 ]
Fefferman, Charles [5 ]
Gancedo, Francisco [6 ]
Gomez-Serrano, Javier [4 ,5 ]
机构
[1] Ecole Normale Super, 24 Rue Lhomond, F-75231 Paris, France
[2] Inst Ciencias Matemat, Madrid, Spain
[3] Univ Autonoma Madrid, Madrid, Spain
[4] CSIC, Madrid, Spain
[5] Princeton Univ, Princeton, NJ 08544 USA
[6] Univ Seville, Seville, Spain
基金
美国国家科学基金会;
关键词
WATER-WAVES EQUATION; WELL-POSEDNESS; FREE-SURFACE; INTERFACE EVOLUTION; GLOBAL-SOLUTIONS; SOBOLEV SPACES; MUSKAT PROBLEM; MOTION; EXISTENCE; BREAKDOWN;
D O I
10.4007/annals.2013.178.3.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of smooth initial data for the 2D free boundary incompressible Euler equations (also known for some particular scenarios as the water wave problem) for which the smoothness of the interface breaks down in finite time into a splash singularity or a splat singularity.
引用
收藏
页码:1061 / 1134
页数:74
相关论文
共 36 条
[1]   ON THE WATER-WAVE EQUATIONS WITH SURFACE TENSION [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (03) :413-499
[2]   Paralinearization of the Dirichlet to Neumann Operator, and Regularity of Three-Dimensional Water Waves [J].
Alazard, Thomas ;
Metivier, Guy .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (12) :1632-1704
[3]   Large time existence for 3D water-waves and asymptotics [J].
Alvarez-Samaniego, Borys ;
Lannes, David .
INVENTIONES MATHEMATICAE, 2008, 171 (03) :485-541
[4]   The zero surface tension limit of two-dimensional water waves [J].
Ambrose, DM ;
Masmoudi, N .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1287-1315
[5]  
[Anonymous], 1979, SIAM STUD APPL MATH, DOI DOI 10.1137/1.9781611970906
[6]   GENERALIZED VORTEX METHODS FOR FREE-SURFACE FLOW PROBLEMS [J].
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1982, 123 (OCT) :477-501
[7]   GROWTH-RATES FOR THE LINEARIZED MOTION OF FLUID INTERFACES AWAY FROM EQUILIBRIUM [J].
BEALE, JT ;
HOU, TY ;
LOWENGRUB, JS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (09) :1269-1301
[8]   Convergence of a boundary integral method for water waves [J].
Beale, JT ;
Hou, TY ;
Lowengrub, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) :1797-1843
[9]  
Castro A., 2012, Mathematical Aspects of Fluid Mechanics, V402 of, P88
[10]   Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves [J].
Castro, Angel ;
Cordoba, Diego ;
Fefferman, Charles ;
Gancedo, Francisco ;
Lopez-Fernandez, Maria .
ANNALS OF MATHEMATICS, 2012, 175 (02) :909-948