Extended Wronskian formula for solutions to the Korteweg-deVries equation

被引:4
作者
Ge, Jian-Ya [1 ]
Zhang, Yi [2 ]
Chen, Deng-Yuan [3 ]
机构
[1] Jinhua Vocat & Tech Coll, Jinhua 321007, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[3] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
来源
ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4 | 2008年 / 96卷
关键词
D O I
10.1088/1742-6596/96/1/012071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A matrix extension is presented for constructing a much broader class of exact solutions to the KdV equation through the Wronskian formulation. The present method can be applied to other-soliton equations.
引用
收藏
页数:8
相关论文
共 50 条
[41]   ON THE SMOOTHING PROPERTIES OF SOLUTIONS TO THE MODIFIED KORTEWEG-DEVRIES EQUATION [J].
LINARES, F ;
SCIALOM, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (01) :141-154
[42]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND THE KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 389 (1797) :319-329
[43]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[44]   FOURIER METHODS WITH EXTENDED STABILITY INTERVALS FOR THE KORTEWEG-DEVRIES EQUATION [J].
CHAN, TF ;
KERKHOVEN, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (03) :441-454
[45]   SOLUTIONS OF KORTEWEG-DEVRIES EQUATION IN FRACTIONAL ORDER SOBOLEV SPACES [J].
BONA, J ;
SCOTT, R .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (01) :87-99
[46]   On the singularities of the discrete Korteweg-deVries equation [J].
Um, D. ;
Ramani, A. ;
Grammaticos, B. ;
Willox, R. ;
Satsuma, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (09)
[47]   DARBOUX TRANSFORMATIONS FOR THE KORTEWEG-DEVRIES EQUATION [J].
HUANG, NN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (02) :469-483
[48]   PARASITIC WAVES AND SOLITONS IN THE NUMERICAL-SOLUTION OF THE KORTEWEG-DEVRIES AND MODIFIED KORTEWEG-DEVRIES EQUATION [J].
MARITZ, MF ;
SCHOOMBIE, SW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :244-266
[49]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[50]   KORTEWEG-DEVRIES EQUATION - SURVEY OF RESULTS [J].
MIURA, RM .
SIAM REVIEW, 1976, 18 (03) :412-459