Liquid-Metal-Filled 3-D Antenna Array Structure With an Integrated Feeding Network

被引:26
作者
Bharambe, Vivek [1 ]
Parekh, Dishit P. [2 ]
Ladd, Collin [2 ]
Moussa, Khalil [3 ]
Dickey, Michael D. [2 ]
Adams, Jacob J. [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[3] 3D Syst Corp, Proc & Mat Dev, Rock Hill, SC 29730 USA
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2018年 / 17卷 / 05期
基金
美国国家科学基金会;
关键词
3-D printing; array antenna; coaxial feed network; liquid metal; vacuum filling; GALLIUM; ALLOY;
D O I
10.1109/LAWP.2018.2813309
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter describes the fabrication and characterization of a microstrip patch array and a three-dimensional (3-D) coaxial feed network embedded within a 3-D printed part. Internal cavities within the acrylic structure are filled with a gallium-based liquid metal alloy using a vacuum-driven process to form conducting elements. In this way, four rectangular patch elements and a feeding network, including power dividers and vertical transitions, are embedded within a single 3-D printed acrylic geometry. Simulations and measurements of a 6 GHz array show that the array produces a matched response and moderate gain at the design frequency. This procedure can be employed to integrate numerous radiating elements and their corresponding feeding networks into a single monolithic acrylic structure, eliminating the need for separate fabrication of printed-circuit-board-based antennas and feeds. The procedure can serve as a convenient approach for rapid proto-typing of complex array designs that exploit the additional spatial degrees of freedom to enhance their electromagnetic performance. Furthermore, manipulating the liquid-phase metallization inside these acrylic cavities can potentially be used to produce frequency- or pattern-reconfigurable arrays in the future.
引用
收藏
页码:739 / 742
页数:4
相关论文
共 24 条
[1]   Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces [J].
Adams, Jacob J. ;
Duoss, Eric B. ;
Malkowski, Thomas F. ;
Motala, Michael J. ;
Ahn, Bok Yeop ;
Nuzzo, Ralph G. ;
Bernhard, Jennifer T. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2011, 23 (11) :1335-1340
[2]  
[Anonymous], 2016, Antenna Theory and Design
[3]   Vacuum-filling of liquid metals for 3D printed RF antennas [J].
Bharambe, Vivek ;
Parekh, Dishit P. ;
Ladd, Collin ;
Moussa, Khalil ;
Dickey, Michael D. ;
Adams, Jacob J. .
ADDITIVE MANUFACTURING, 2017, 18 :221-227
[4]  
Collier R, 2013, CAMB RF MICROW ENG, P1, DOI 10.1017/CBO9781139199018
[5]  
Coskcr M, 2016, IEEE ANTENNAS PROP, P809, DOI 10.1109/APS.2016.7696113
[6]   3-D Printed Metal-Pipe Rectangular Waveguides [J].
D'Auria, Mario ;
Otter, William J. ;
Hazell, Jonathan ;
Gillatt, Brendan T. W. ;
Long-Collins, Callum ;
Ridler, Nick M. ;
Lucyszyn, Stepan .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2015, 5 (09) :1339-1349
[7]   Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature [J].
Dickey, Michael D. ;
Chiechi, Ryan C. ;
Larsen, Ryan J. ;
Weiss, Emily A. ;
Weitz, David A. ;
Whitesides, George M. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1097-1104
[8]   Liquid metal actuation by electrical control of interfacial tension [J].
Eaker, Collin B. ;
Dickey, Michael D. .
APPLIED PHYSICS REVIEWS, 2016, 3 (03)
[9]  
Fan Cai, 2015, 2015 IEEE MTT-S International Microwave Symposium (IMS2015), P1, DOI 10.1109/MWSYM.2015.7166895
[10]  
Farooqui MF, 2015, IEEE ANTENNAS PROP, P324, DOI 10.1109/APS.2015.7304548