Inequidimensionality of Hilbert schemes

被引:4
作者
Chang, MC [1 ]
机构
[1] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
关键词
Hilbert scheme; moduli space; projectively normal subvarieties; deformation theory; dimension;
D O I
10.1090/S0002-9939-97-03836-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a lower bound on the number of distinct dimensions of irreducible components of the Hilbert scheme of codimension 2 subvarieties in Ipn, for n less than or equal to 5 (respectively, the moduli space of surfaces or S-folds) in terms of the Hilbert polynomial (resp. Chern numbers).
引用
收藏
页码:2521 / 2526
页数:6
相关论文
共 9 条
[1]  
CATANESE F, 1986, J DIFFER GEOM, V24, P395
[2]  
CATANESE F, 1984, J DIFFER GEOM, V19, P483
[3]  
Catanese F., 1992, J ALGEBRAIC GEOM, V1, P561
[4]  
CHANG M, CMP, V96, P14
[5]  
CHANG MC, 1989, J REINE ANGEW MATH, V397, P214
[6]  
Ellia P., 1992, INT J MATH, V3, P799
[7]  
ELLINGSRUD G, 1975, ANN SCI ECOLE NORM S, V8, P423
[8]  
MANETTI M, 1994, ITERATED DOUBLE COVE
[9]  
RAN Z, 1989, LECT NOTES MATH, V1389, P245