Influence of the ac-Stark shift on GPS atomic clock timekeeping

被引:24
|
作者
Formichella, V. [1 ,2 ]
Camparo, J. [3 ]
Tavella, P. [1 ]
机构
[1] INRiM Ist Nazl Ric Metrol, Dept Phys Metrol, Str Cacce 91, I-10135 Turin, Italy
[2] Politecn Torino, Dept Elect & Telecommun, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[3] Aerosp Corp, Phys Sci Labs, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA
关键词
FREQUENCY STANDARDS; LIGHT SHIFT; SYSTEM; CELL; MISSION; SIGNAL;
D O I
10.1063/1.4975071
中图分类号
O59 [应用物理学];
学科分类号
摘要
The ac-Stark shift (or light shift) is a fundamental aspect of the field/atom interaction arising from virtual transitions between atomic states, and as Alfred Kastler noted, it is the real-photon counterpart of the Lamb shift. In the rubidium atomic frequency standards (RAFS) flying on Global Positioning System (GPS) satellites, it plays an important role as one of the major perturbations defining the RAFS' frequency: the rf-discharge lamp in the RAFS creates an atomic signal via optical pumping and simultaneously perturbs the atoms' ground-state hyperfine splitting via the light shift. Though the significance of the light shift has been known for decades, to date there has been no concrete evidence that it limits the performance of the high-quality RAFS flying on GPS satellites. Here, we show that the long-term frequency stability of GPS RAFS is primarily determined by the light shift as a consequence of stochastic jumps in lamplight intensity. Our results suggest three paths forward for improved GPS system timekeeping: (1) reduce the light-shift coefficient of the RAFS by careful control of the lamp's spectrum; (2) operate the lamp under conditions where lamplight jumps are not so pronounced; and (3) employ a light source for optical pumping that does not suffer pronounced light jumps (e.g., a diode laser). Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] AC-Stark shift of atomic levels
    Delone, NB
    Krainov, VP
    USPEKHI FIZICHESKIKH NAUK, 1999, 169 (07): : 753 - 772
  • [2] Suppression Method of AC-Stark Shift in SERF Atomic Magnetometer
    Li, Yang
    Ding, Ming
    Liu, Xuejing
    Cai, Hongwei
    Zhao, Junpeng
    Fang, Jiancheng
    IEEE PHOTONICS JOURNAL, 2018, 10 (05):
  • [3] ac Stark shift of the Cs microwave atomic clock transitions
    Rosenbusch, P.
    Ghezali, S.
    Dzuba, V. A.
    Flambaum, V. V.
    Beloy, K.
    Derevianko, A.
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [4] INFLUENCE OF AC-STARK EFFECT IN TRANSIENT SERS
    KRYZHANOVSKY, BV
    SAPONDZHYAN, SO
    SARKISYAN, DG
    TOROSYAN, GA
    OPTICS COMMUNICATIONS, 1989, 71 (06) : 381 - 384
  • [5] Suppression of the AC-Stark shift by vortex light beams
    Schulz, S. A-L
    Muller, R. A.
    Surzhykov, A.
    31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), 2020, 1412
  • [6] Rabi splitting and ac-Stark shift of a charged exciton
    Kroner, M.
    Lux, C.
    Seidl, S.
    Holleitner, A. W.
    Karrai, K.
    Badolato, A.
    Petroff, P. M.
    Warburton, R. J.
    APPLIED PHYSICS LETTERS, 2008, 92 (03)
  • [7] Diffusive suppression of AC-Stark shifts in atomic magnetometers
    Sulai, I. A.
    Wyllie, R.
    Kauer, M.
    Smetana, G. S.
    Wakai, R. T.
    Walker, T. G.
    OPTICS LETTERS, 2013, 38 (06) : 974 - 976
  • [8] Absorption imaging of trapped atoms in presence of AC-Stark shift
    Bhardwaj, Kavish
    Ram, S. P.
    Singh, S.
    Tiwari, V. B.
    Mishra, S. R.
    PHYSICA SCRIPTA, 2021, 96 (01)
  • [9] Circuit QED with a Nonlinear Resonator: ac-Stark Shift and Dephasing
    Ong, F. R.
    Boissonneault, M.
    Mallet, F.
    Palacios-Laloy, A.
    Dewes, A.
    Doherty, A. C.
    Blais, A.
    Bertet, P.
    Vion, D.
    esteve, D.
    PHYSICAL REVIEW LETTERS, 2011, 106 (16)
  • [10] Mapping between electronic structure and ac-Stark shift resonances in heterostructures
    Bittencourt, AC
    Marques, GE
    Trallero-Giner, C
    SOLID STATE COMMUNICATIONS, 2004, 129 (01) : 57 - 61