Thermal Analysis of the Diamond Compound Refractive Lens

被引:5
作者
Antipov, Sergey [1 ,2 ]
Baryshev, Sergey [1 ]
Baturin, Stanislav [1 ]
Chen, Gongxiaohui [1 ]
Kostin, Roman [1 ]
Stoupin, Stanislav [3 ]
机构
[1] Euclid Techlabs LLC, Bolingbrook, IL 60440 USA
[2] Argonne Natl Lab, Argonne Wakefield Accelerator Facil, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
来源
ADVANCES IN X-RAY/EUV OPTICS AND COMPONENTS XI | 2016年 / 9963卷
关键词
Compound refractive lens; diamond; thermal management; DESIGN;
D O I
10.1117/12.2238442
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Two dimensional compound refractive lenses (CRL) made out of single crystal diamond have been recently demonstrated [1, 2]. The use of a compound refractive lens is inevitably associated with high x-ray absorption. One of the benefits of diamond as a material for CRLs is its ability to withstand high instantaneous and average heat load. We used the finite element method to simulate thermal effects in the lens. A steady state simulation is done for high average heat load conditions of X-ray free electron lasers and ultimate storage rings. We compare diamond with beryllium, a common material for the x-ray refractive optics, and find that the diamond lens heats up less than equivalent beryllium one at energies above 18 keV. Due to lower thermal expansion coefficient diamond lens can maintain its performance also at lower energy spectrum 10 - 18 keV even though its temperature increase is higher than that of beryllium.
引用
收藏
页数:5
相关论文
共 15 条
  • [1] A planar refractive x-ray lens made of nanocrystalline diamond
    Alianelli, L.
    Sawhney, K. J. S.
    Malik, A.
    Fox, O. J. L.
    May, P. W.
    Stevens, R.
    Loader, I. M.
    Wilson, M. C.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
  • [2] Single-crystal diamond refractive lens for focusing X-rays in two dimensions
    Antipov, S.
    Baryshev, S. V.
    Butler, J. E.
    Antipova, O.
    Liu, Z.
    Stoupin, S.
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2016, 23 : 163 - 168
  • [3] Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers
    Chubar, Oleg
    Geloni, Gianluca
    Kocharyan, Vitali
    Madsen, Anders
    Saldin, Evgeni
    Serkez, Svitozar
    Shvyd'ko, Yuri
    Sutter, John
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2016, 23 : 410 - 424
  • [4] Compound refractive lenses as prefocusing optics for X-ray FEL radiation
    Heimann, Philip
    MacDonald, Michael
    Nagler, Bob
    Lee, Hae Ja
    Galtier, Eric
    Arnold, Brice
    Xing, Zhou
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2016, 23 : 425 - 429
  • [5] Diamond kinoform hard X-ray refractive lenses: design, nanofabrication and testing
    Isakovic, A. F.
    Stein, A.
    Warren, J. B.
    Narayanan, S.
    Sprung, M.
    Sandy, A. R.
    Evans-Lutterodt, K.
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2009, 16 : 8 - 13
  • [6] Design of a RF window for 170 GHz, 1 MW gyrotron for ECRH application
    Kumar, Anil
    Sharan, Sudeep
    Kumar, Nitin
    Singh, Udaybir
    Khatun, H.
    Vyas, V.
    Sinha, A. K.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2012, 55 (01) : 93 - 97
  • [7] Imaging by parabolic refractive lenses in the hard X-ray range
    Lengeler, B
    Schroer, C
    Tümmler, J
    Benner, B
    Richwin, M
    Snigirev, A
    Snigireva, I
    Drakopoulos, M
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 1999, 6 : 1153 - 1167
  • [8] Diamond planar refractive lenses for third- and fourth-generation X-ray sources
    Nöhammer, B
    Hoszowska, J
    Freund, AK
    David, C
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2003, 10 : 168 - 171
  • [9] Large-acceptance diamond planar refractive lenses manufactured by laser cutting
    Polikarpov, Maxim
    Snigireva, Irina
    Morse, John
    Yunkin, Vyacheslav
    Kuznetsov, Sergey
    Snigirev, Anatoly
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 : 23 - 28
  • [10] Romanov G., 2012, P IPAC 12, P63