NECESSARY CONDITIONS FOR THE FREDHOLMNESS OF THREE-DIMENSIONAL HELMHOLTZ EQUATION WITH NONLOCAL BOUNDARY VALUE CONDITIONS

被引:0
|
作者
Mustafayeva, Y. Y. [1 ]
Aliyev, N. A. [1 ]
机构
[1] Baku State Univ, Baku, Azerbaijan
来源
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I | 2018年
关键词
Nonlocal conditions; three-dimensional Helmholtz equation; necessary conditions; solvability; regularization; Fredholmness;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:285 / 287
页数:3
相关论文
共 50 条
  • [41] Numerical Solution of Parabolic Problems with Nonlocal Boundary Conditions
    Ciegis, R.
    Tumanova, N.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (12) : 1318 - 1329
  • [42] Fuzzy differential equation with nonlocal conditions and fuzzy semigroup
    Said Melliani
    El Hassan Eljaoui
    Lalla Saadia Chadli
    Advances in Difference Equations, 2016
  • [43] Hybrid fractional differential equation with nonlocal and impulsive conditions
    Hilal, Khalid
    Kajouni, Ahmed
    Zerbib, Samira
    FILOMAT, 2023, 37 (10) : 3291 - 3303
  • [44] Fuzzy differential equation with nonlocal conditions and fuzzy semigroup
    Melliani, Said
    Eljaoui, El Hassan
    Saadia Chadli, Lalla
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 12
  • [45] INITIAL BOUNDARY VALUE PROBLEM FOR A NONLOCAL IN TIME PARABOLIC EQUATION
    Starovoitov, Victor N.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1311 - 1319
  • [46] Two-Dimensional Boundary Value Problem of Heat Conduction in a Cone with Special Boundary Conditions
    Ramazanov, M., I
    Jenaliyev, M. T.
    Tanin, A. O.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (12) : 2913 - 2925
  • [47] Two-Dimensional Boundary Value Problem of Heat Conduction in a Cone with Special Boundary Conditions
    M. I. Ramazanov
    M. T. Jenaliyev
    A. O. Tanin
    Lobachevskii Journal of Mathematics, 2021, 42 : 2913 - 2925
  • [48] A boundary-value problem for the equation of mixed type with generalized operators of fractional differentiation in the boundary conditions
    Repin, Oleg A.
    Kumykova, Svetlana K.
    JOURNAL OF APPLIED ANALYSIS, 2016, 22 (01) : 27 - 36
  • [49] Mixed reproducing kernel-based iterative approach for nonlinear boundary value problems with nonlocal conditions
    Li, Xiuying
    Gao, Yang
    Wu, Boying
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (03): : 649 - 658
  • [50] ON PROBLEMS WITH DISPLACEMENT IN BOUNDARY CONDITIONS FOR HYPERBOLIC EQUATION
    Utkina, E. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (01): : 65 - 73