Ferromagnetic Resonance Study on a Grid of Permalloy Nanowires

被引:2
作者
Venkateswarlu, D. [1 ]
Padmalekha, K. G. [1 ,2 ]
Bhat, S. V. [1 ]
Kumar, P. S. Anil [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
[2] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
关键词
Antidots; demagnetization fields; ferromagnetic resonance (FMR); grid; micromagnetics; nanowires; OOMMF; PBC; shape anisotropy; DYNAMICS; WAVES;
D O I
10.1109/TMAG.2013.2244073
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report ferromagnetic resonance (FMR) study on a grid formed with permalloy nanowires to understand the spin wave dynamics. The presence of two sets of magnetic nanowires perpendicular to each other in the same device enables better control over spin waves. The grid was fabricated using e-beam lithography followed by DC-Magnetron sputtering and liftoff technique. It has dimensions of 800 +/- 10 and 400 +/- 10 nm as periods along X and Y directions with permalloy wires of width 145 +/- 10 nm. FMR studies were done at X-band (9.4 GHz) with the field sweep up to 1 Tesla. The in-plane angular variation of resonant fields shows that there are two well separated modes present, indicating two uniaxial anisotropy axes which are perpendicular to each other. The variation in the intensities in the FMR signal w.r.t. the grid angle is used to describe the spin wave confinement in different regions of the grid. We also explained the asymmetry in the magnetic properties caused by the geometrical property of the rectangular grid and the origin for the peak splitting for the modes occurring at higher resonant fields. Micromagnetic simulations based on OOMMF with two dimensional periodic boundary conditions (2D-PBC) are used to support our experimental findings.
引用
收藏
页码:3097 / 3100
页数:4
相关论文
共 19 条
[1]  
Chumak A. V., 2008, APPL PHYS LETT, V95
[2]  
Donahue M.J., 1999, OOMMF USERS GUIDE VE
[3]   Parametrical interaction of magnetostatic volume waves in a space-time periodic magnetic field [J].
Fetisov, YK ;
Ostrovskaya, NV ;
Popkov, AF .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (08) :5730-5732
[4]   Micromagnetic calculation of the high frequency dynamics of nano-size rectangular ferromagnetic stripes [J].
Gérardin, O ;
Le Gall, H ;
Donahue, MJ ;
Vukadinovic, N .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) :7012-7014
[5]   Brillouin light scattering studies of planar metallic magnonic crystals [J].
Gubbiotti, G. ;
Tacchi, S. ;
Madami, M. ;
Carlotti, G. ;
Adeyeye, A. O. ;
Kostylev, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (26)
[6]   Magnonics [J].
Kruglyak, V. V. ;
Demokritov, S. O. ;
Grundler, D. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (26)
[7]   Periodic boundary conditions for demagnetization interactions in micromagnetic simulations [J].
Lebecki, K. M. ;
Donahue, M. J. ;
Gutowski, M. W. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (17)
[8]   Physical Origin and Generic Control of Magnonic Band Gaps of Dipole-Exchange Spin Waves in Width-Modulated Nanostrip Waveguides [J].
Lee, Ki-Suk ;
Han, Dong-Soo ;
Kim, Sang-Koog .
PHYSICAL REVIEW LETTERS, 2009, 102 (12)
[9]   Large magnonic band gaps and spectra evolution in three-dimensional magnonic crystals based on magnetoferritin nanoparticles [J].
Mamica, S. ;
Krawczyk, M. ;
Sokolovskyy, M. L. ;
Romero-Vivas, J. .
PHYSICAL REVIEW B, 2012, 86 (14)
[10]   Magnonics: Spin Waves on the Nanoscale [J].
Neusser, Sebastian ;
Grundler, Dirk .
ADVANCED MATERIALS, 2009, 21 (28) :2927-2932