Function spaces on singular manifolds

被引:33
作者
Amann, H. [1 ]
机构
[1] Univ Zurich, Math Inst, CH-8057 Zurich, Switzerland
关键词
Weighted Sobolev spaces; Bessel potential spaces; Besov spaces; singularities; non-complete Riemannian manifolds with boundary; msc (2010); 46E35; 54C35; 58A99; 58D99; COMPLETE RIEMANNIAN MANIFOLD; SOBOLEV SPACES; POLYHEDRAL DOMAINS; REGULARITY; INFINITY; THEOREMS;
D O I
10.1002/mana.201100157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that most of the well-known basic results for Sobolev-Slobodeckii and Bessel potential spaces, known to hold on bounded smooth domains in R-n, continue to be valid on a wide class of Riemannian manifolds with singularities and boundary, provided suitable weights, which reflect the nature of the singularities, are introduced. These results are of importance for the study of partial differential equations on piece-wise smooth domains.
引用
收藏
页码:436 / 475
页数:40
相关论文
共 41 条
  • [11] [Anonymous], 1985, MONOGRAPHS STUDIES M
  • [12] [Anonymous], 1982, FUNDAMENTAL PRINCIPL
  • [13] [Anonymous], 1994, De Gruyter Exp. Math.
  • [14] [Anonymous], 1997, Elliptic Boundary Value Problems in Domains with Point Singularities
  • [15] [Anonymous], 1971, GRADUATE TEXTS MATH
  • [16] AUBIN T, 1976, B SCI MATH, V100, P149
  • [17] AUBIN T., 1998, SPRINGER MONOGRAPHS
  • [18] Dauge M., 1988, LECT NOTES MATH SMOO, V1341
  • [19] Dieudonne J., 1969, ELEMENTS ANAL, VIVII
  • [20] SPACES, EMBEDDING-THEOREMS AND NORM INEQUALITIES ON OPEN MANIFOLDS
    EICHHORN, J
    [J]. MATHEMATISCHE NACHRICHTEN, 1988, 138 : 157 - 168