A Sparse-Group Lasso

被引:950
|
作者
Simon, Noah [1 ]
Friedman, Jerome [1 ]
Hastie, Trevor [2 ]
Tibshirani, Robert [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Dept Hlth Res & Policy, Stanford, CA 94305 USA
关键词
Model; Nesterov; Penalize; Regression; Regularize; REGULARIZATION; SELECTION;
D O I
10.1080/10618600.2012.681250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For high-dimensional supervised learning problems, often using problem-specific assumptions can lead to greater accuracy. For problems with grouped covariates, which are believed to have sparse effects both on a group and within group level, we introduce a regularized model for linear regression with l(1) and l(2) penalties. We discuss the sparsity and other regularization properties of the optimal fit for this model, and show that it has the desired effect of group-wise and within group sparsity. We propose an algorithm to fit the model via accelerated generalized gradient descent, and extend this model and algorithm to convex loss functions. We also demonstrate the efficacy of our model and the efficiency of our algorithm on simulated data. This article has online supplementary material.
引用
收藏
页码:231 / 245
页数:15
相关论文
共 50 条
  • [21] Adaptive sparse group LASSO in quantile regression
    Mendez-Civieta, Alvaro
    Aguilera-Morillo, M. Carmen
    Lillo, Rosa E.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 547 - 573
  • [22] Adaptive sparse group LASSO in quantile regression
    Alvaro Mendez-Civieta
    M. Carmen Aguilera-Morillo
    Rosa E. Lillo
    Advances in Data Analysis and Classification, 2021, 15 : 547 - 573
  • [23] Asymptotic theory of the adaptive Sparse Group Lasso
    Poignard, Benjamin
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 297 - 328
  • [24] Linking metabolic network features to phenotypes using sparse group lasso
    Samal, Satya Swarup
    Radulescu, Ovidiu
    Weber, Andreas
    Froehlich, Holger
    BIOINFORMATICS, 2017, 33 (21) : 3445 - 3453
  • [25] Sparse group LASSO based uncertain feature selection
    Xie, Zongxia
    Xu, Yong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2014, 5 (02) : 201 - 210
  • [26] sparsegl An R Package for Estimating Sparse Group Lasso
    Liang, Xiaoxuan
    Cohen, Aaron
    Heinsfeld, Anibal Solon
    Pestilli, Franco
    Mcdonald, Daniel J.
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 110 (06): : 1 - 23
  • [27] Sparse Multiperiod Group Lasso for Bearing Multifault Diagnosis
    Zhao, Zhibin
    Wang, Shibin
    Sun, Chuang
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (02) : 419 - 431
  • [28] Linearized alternating direction method of multipliers for sparse group and fused LASSO models
    Li, Xinxin
    Mo, Lili
    Yuan, Xiaoming
    Zhang, Jianzhong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 79 : 203 - 221
  • [29] SPARSE-GROUP LOG-SUM PENALIZED GRAPHICAL MODEL LEARNING FOR TIME SERIES
    Tugnait, Jitendra K.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5822 - 5826
  • [30] Hierarchical Sparse Modeling: A Choice of Two Group Lasso Formulations
    Yan, Xiaohan
    Bien, Jacob
    STATISTICAL SCIENCE, 2017, 32 (04) : 531 - 560