The interaction of surface water waves with submerged breakwaters

被引:64
作者
Christou, N. [1 ]
Swan, C. [1 ]
Gudmestad, O. T. [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Civil & Environm Engn, London SW7 2AZ, England
[2] StatoilHydro, N-4035 Stavanger, Norway
[3] Univ Stavanger, N-4035 Stavanger, Norway
基金
英国工程与自然科学研究理事会;
关键词
Submerged breakwaters; Wave-structure interaction; Harmonic generation; Multiple-flux boundary element method;
D O I
10.1016/j.coastaleng.2008.02.014
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper concerns the behaviour of nonlinear regular waves interacting with rectangular submerged breakwaters. A new series of experimental results is presented and compared with numerical calculations based upon a Boundary Element Method (BEM) that utilises multiple fluxes to deal with the discontinuities encountered at the corners of the domain. Specifically, comparisons concern both the spatial water surface profiles at various times and the spatial evolution of the harmonics generated by the breakwaters, the latter being an important focus for the paper. The BEM is shown to accurately model both the water surface profile and the harmonic generation, provided the breakwater width is sufficient to ensure that flow separation is not a controlling influence. Furthermore, evidence is provided to confirm that reflection from rectangular submerged breakwaters is fundamentally a linear phenomenon. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:945 / 958
页数:14
相关论文
共 34 条
[1]  
Barrett R., 1994, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, V2nd ed.
[2]  
Battjes J.A., 1992, COAST ENG 1992 P 23, P42
[3]  
Becker A. A., 1992, BOUNDARY ELEMENT MET
[4]  
BEJI S, 1992, P 23 INT C COAST ENG, P51
[5]  
Brebbia CA, 1992, BOUNDARY ELEMENTS IN
[6]  
Dattatri J., 1978, COASTAL ENG P, P2153
[7]   ON THE REFLEXION OF SURFACE WAVES BY A SUBMERGED PLANE BARRIER [J].
DEAN, WR .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1945, 41 (03) :231-238
[8]   LOCALIZATION OF GRAVITY-WAVES ON A CHANNEL WITH A RANDOM BOTTOM [J].
DEVILLARD, P ;
DUNLOP, F ;
SOUILLARD, B .
JOURNAL OF FLUID MECHANICS, 1988, 186 :521-538
[9]  
Dick T.M., 1968, Coast. Eng. Proc., V1, P1141, DOI [10.9753/icce.v11.72, DOI 10.9753/ICCE.V11.72]
[10]  
Dold J.W., 1985, Proceedings of 19th International Conference on Coastal Engineering, Houston, P955, DOI 10.9753/icce.v19.65