Topological chaos: what may this mean?

被引:32
作者
Blanchard, Francois [1 ]
机构
[1] CNRS U Marne la Vallee, Lab Analyse & Math Appl, Marne La Vallee 2, France
关键词
chaos; order; partial chaos; scrambled set; sensitivity; weak mixing; SENSITIVE DEPENDENCE; ENTROPY; SYSTEMS; SETS;
D O I
10.1080/10236190802385355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We confront existing definitions of chaos with the state of the art in topological dynamics. The article does not propose any new definition of chaos but, starting from several topological properties that can be reasonably called chaotic, tries to sketch a theoretical view of chaos. Among the main ideas in this article are the distinction between overall chaos and partial chaos, and the fact that some dynamical properties may be considered more chaotic than others.
引用
收藏
页码:23 / 46
页数:24
相关论文
共 49 条
[1]  
Akin E, 1996, OHIO ST U M, V5, P25
[2]  
Akin E., 1993, General topology of dynamical systems, V1
[3]  
[Anonymous], 1964, Ukr. Mat. Zh
[4]  
[Anonymous], 1979, BRON STEJN EXTENSION
[5]  
[Anonymous], 1988, N HOLLAND MATH STUDI
[6]  
Auslander J., 1980, Tohoku Math. J., V32, P177, DOI DOI 10.2748/TMJ/1178229634
[7]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[8]   Some properties of cellular automata with equicontinuity points [J].
Blanchard, F ;
Tisseur, P .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (05) :569-582
[9]   Constant-length substitutions and countable scrambled sets [J].
Blanchard, F ;
Durand, F ;
Maass, A .
NONLINEARITY, 2004, 17 (03) :817-833
[10]   Some results about the chaotic behavior of cellular automata [J].
Blanchard, F ;
Cervelle, J ;
Formenti, E .
THEORETICAL COMPUTER SCIENCE, 2005, 349 (03) :318-336