Backward Bifurcation in Simple SIS Model

被引:7
作者
Wang, Zhan-wei [1 ]
机构
[1] Zhengzhou Inst Aeronaut Ind Management, Dept Math & Phys, Zhengzhou 450015, Peoples R China
基金
中国国家自然科学基金;
关键词
SIS model; backward bifurcation; treatment; bistable; limit cycle; EPIDEMIC MODEL;
D O I
10.1007/s10255-006-6160-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe and analyze a simple SIS model with treatment. In particular, we give a completely qualitative analysis by means of the theory of asymptotically autonomous system. It is found that a backward bifurcation occurs if the adequate contact rate or the capacity is small. It is also found that there exists bistable endemic equilibria. In the case of disease-induced death, it is shown that the backward bifurcation also occurs. Moreover, there is no limit cycle under some conditions, and the subcritical Hopf bifurcation occurs under another conditions.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 12 条
[1]   Backward bifurcations in simple vaccination models [J].
Brauer, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :418-431
[2]   Backwards bifurcations and catastrophe in simple models of fatal diseases [J].
Dushoff, J ;
Huang, WZ ;
Castillo-Chavez, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (03) :227-248
[3]  
Gómez-Acevedo H, 2005, B MATH BIOL, V67, P101, DOI 10.1016/j.bulm.2004.06.004
[4]   Backward bifurcation in epidemic control [J].
Hadeler, KP ;
VandenDriessche, P .
MATHEMATICAL BIOSCIENCES, 1997, 146 (01) :15-35
[5]   A CORE GROUP MODEL FOR DISEASE TRANSMISSION [J].
HADELER, KP ;
CASTILLOCHAVEZ, C .
MATHEMATICAL BIOSCIENCES, 1995, 128 (1-2) :41-55
[6]   Global stability and periodicity on SIS epidemic models with backward bifurcation [J].
Hui, J ;
Zhu, DM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (8-9) :1271-1290
[7]  
KZALETA CM, 2000, MATH BIOSCI, V164, P183
[8]  
LI JQ, 2004, ACTA MATH SCI, V300, P273
[9]  
Perko L., 1996, Differential Equations and Dynamical Systems
[10]  
THIEME HR, 1994, ROCKY MT J MATH, V24, P351