Toughness and Vertex Degrees

被引:9
作者
Bauer, D. [1 ]
Broersma, H. J. [2 ]
van den Heuvel, J. [3 ]
Kahl, N. [4 ]
Schmeichel, E. [5 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[3] London Sch Econ, Dept Math, London WC2A 2AE, England
[4] Seton Hall Univ, Dept Math & Comp Sci, S Orange, NJ 07079 USA
[5] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
基金
英国工程与自然科学研究理事会;
关键词
degree sequences; toughness; best monotone theorem;
D O I
10.1002/jgt.21639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study theorems giving sufficient conditions on the vertex degrees of a graph G to guarantee G is t-tough. We first give a best monotone theorem when t=1, but then show that for any integer k=1, a best monotone theorem for t=1k=1 requires at least f(k).|V(G)| nonredundant conditions, where f(k) grows superpolynomially as k?8. When t<1, we give an additional, simple theorem for G to be t-tough, in terms of its vertex degrees. (C) 2012 Wiley Periodicals, Inc. J Graph Theory 72: 209-219, 2013
引用
收藏
页码:209 / 219
页数:11
相关论文
共 7 条
[1]   REALIZABILITY AND UNIQUENESS IN GRAPHS [J].
AIGNER, M ;
TRIESCH, E .
DISCRETE MATHEMATICS, 1994, 136 (1-3) :3-20
[2]  
[Anonymous], 2001, Introduction to Graph Theory
[3]  
[Anonymous], 1972, Journal of combinatorial theory, DOI DOI 10.1016/0095-8956(72)90020-2
[4]  
Boesch F. T., 1974, Journal of Combinatorial Theory, Series B, V16, P162, DOI 10.1016/0095-8956(74)90058-6
[5]  
Bondy J. A., 1969, STUD SCI MATH HUNG, V4, P473
[6]  
Hardy GH, 1918, P LOND MATH SOC, V17, P75
[7]  
Kriesell M., 2007, PREPRINT