Generation of hydrogen peroxide in chloroplasts of Arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress

被引:123
作者
Fahnenstich, Holger [1 ]
Scarpeci, Telma E. [2 ]
Valle, Estela M. [2 ]
Fluegge, Ulf-Ingo [1 ]
Maurino, Veronica G. [1 ]
机构
[1] Univ Cologne, Inst Bot, D-50931 Cologne, Germany
[2] Univ Nacl Rosario, Fac Ciencias Bioquim & Farmaceut, Inst Mol & Cellular Biol, Consejo Nacl Invest Cient & Tecn, RA-2000 Rosario, Argentina
关键词
D O I
10.1104/pp.108.126789
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis ( Arabidopsis thaliana) overexpressing glycolate oxidase ( GO) in chloroplasts accumulates both hydrogen peroxide (H2O2) and glyoxylate. GO-overexpressing lines (GO plants) grown at 75 mu mol quanta m(-2) s(-1) show retarded development, yellowish rosettes, and impaired photosynthetic performance, while at 30 mu mol quanta m(-2) s(-1), this phenotype virtually disappears. The GO plants develop oxidative stress lesions under photorespiratory conditions but grow like wild-type plants under nonphotorespiratory conditions. GO plants coexpressing enzymes that further metabolize glyoxylate but still accumulate H2O2 show all features of the GO phenotype, indicating that H2O2 is responsible for the GO phenotype. The GO plants can complete their life cycle, showing that they are able to adapt to the stress conditions imposed by the accumulation of H2O2 during the light period. Moreover, the data demonstrate that a response to oxidative stress is installed, with increased expression and/or activity of known oxidative stress-responsive components. Hence, the GO plants are an ideal noninvasive model system in which to study the effects of H2O2 directly in the chloroplasts, because H2O2 accumulation is inducible and sustained perturbations can reproducibly be provoked by exposing the plants to different ambient conditions.
引用
收藏
页码:719 / 729
页数:11
相关论文
共 58 条
[1]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[2]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[3]   Production and scavenging of reactive oxygen species in chloroplasts and their functions [J].
Asada, Kozi .
PLANT PHYSIOLOGY, 2006, 141 (02) :391-396
[4]   The metabolic response of heterotrophic Arabidopsis cells to oxidative stress [J].
Baxter, Charles J. ;
Redestig, Henning ;
Schauer, Nicolas ;
Repsilber, Dirk ;
Patil, Kiran R. ;
Nielsen, Jens ;
Selbig, Joachim ;
Liu, Junli ;
Fernie, Alisdair R. ;
Sweetlove, Lee J. .
PLANT PHYSIOLOGY, 2007, 143 (01) :312-325
[5]  
Beauchamp C., 1971, ANAL BIOCHEM, V44, P276, DOI DOI 10.1016/0003-2697(71)90370-8
[6]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[7]   Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis [J].
Bechtold, Ulrike ;
Richard, Odile ;
Zamboni, Alessandro ;
Gapper, Catherine ;
Geisler, Matt ;
Pogson, Barry ;
Karpinski, Stanislaw ;
Mullineaux, Philip M. .
JOURNAL OF EXPERIMENTAL BOTANY, 2008, 59 (02) :121-133
[8]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[9]   ALTERATIONS IN GROWTH, PHOTOSYNTHESIS, AND RESPIRATION IN A STARCHLESS MUTANT OF ARABIDOPSIS-THALIANA (L) DEFICIENT IN CHLOROPLAST PHOSPHOGLUCOMUTASE ACTIVITY [J].
CASPAR, T ;
HUBER, SC ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1985, 79 (01) :11-17
[10]   Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis [J].
Chang, CCC ;
Ball, L ;
Fryer, MJ ;
Baker, NR ;
Karpinski, S ;
Mullineaux, PM .
PLANT JOURNAL, 2004, 38 (03) :499-511