Identification of geometric parameters of drawbead in metal forming processes

被引:6
作者
Han, LF
Li, GY
Han, X [1 ]
Zhong, ZH
机构
[1] Hunan Univ, Key Lab Minist Educ, Changsha 410082, Peoples R China
[2] Xiangtan Univ, Coll Mech Engn, Xiangtan 411105, Peoples R China
关键词
drawbead; neural network; genetic algorithm; inverse problem; computational inverse technique;
D O I
10.1080/17415970500397101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A computational inverse technique is presented for identification of geometric parameters of drawbead in sheet forming processes. The explicit dynamic finite element method (FEM) is employed as the forward solver to calculate the maximal effective stress, maximal effective strain and maximal thinning ratio of sheet thickness for known drawbead geometric parameters. A neural network (NN) is adopted as the inverse operator to determine the geometric parameters of circular drawbead. A sample design method with the strategy of updating training sample set is developed for the fast convergence in the training process of NN model. Once the training sample set is updated, the NN structure will be optimized using the genetic algorithm (GA). The numerical examples are presented to demonstrate the efficiency of the technique.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
[31]   Forming Defects Prediction for Sheet Metal Forming Using Gaussian Process Regression [J].
Lin JingDong ;
Huang Li ;
Zhou HongBo .
2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, :472-476
[32]   Numerical simulation of sheet metal forming: a review [J].
Ablat, Muhammad Ali ;
Qattawi, Ala .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 89 (1-4) :1235-1250
[33]   Models and modelling for process limits in metal forming [J].
Volk, Wolfram ;
Groche, Peter ;
Brosius, Alexander ;
Ghiotti, Andrea ;
Kinsey, Brad L. ;
Liewald, Mathias ;
Madej, Lukasz ;
Min, Junying ;
Yanagimoto, Jun .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2019, 68 (02) :775-798
[34]   Identification of Johnson-Cook and Tresca's Parameters for Numerical Modeling of AISI-304 Machining Processes [J].
Bosetti, Paolo ;
Maximiliano, Carlos ;
Bort, Giorgio ;
Bruschi, Stefania .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (05)
[35]   Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy [J].
Ma, Zheng ;
Ji, Hongchao ;
Huang, Xiaomin ;
Xiao, Wenchao ;
Tang, Xuefeng .
MATERIALS, 2021, 14 (19)
[36]   Numerical and Experimental Analysis and Optimization of Process Parameters of AA1050 Incremental Sheet Forming [J].
Mohammadi, Hosein ;
Sharififar, Masoud ;
Ataee, Ali Asghar .
JOURNAL OF COMPUTATIONAL APPLIED MECHANICS, 2014, 45 (01) :35-45
[37]   Identification of unknown parameters in the dynamic analysis of a subway track by genetic algorithms [J].
Abe, K ;
Konno, M ;
Furuta, M .
BOUNDARY ELEMENTS XXVI, 2004, 19 :229-238
[38]   Design of Contactless Hand Biometric System With Relative Geometric Parameters [J].
Siswanto, A. ;
Tarigan, P. ;
Fahmi, F. .
PROCEEDINGS OF 2013 3RD INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATIONS, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING (ICICI-BME), 2013, :199-203
[39]   Recent Developments and Trends in the Friction Testing for Conventional Sheet Metal Forming and Incremental Sheet Forming [J].
Trzepiecinski, Tomasz ;
Lemu, Hirpa G. .
METALS, 2020, 10 (01)
[40]   Optimization of geometric parameters of cylindrical film cooling hole with contoured craters to enhance film-cooling effectiveness [J].
Bai, L. C. ;
Zhang, C. ;
Tong, Z. T. ;
Ju, P. F. .
THERMOPHYSICS AND AEROMECHANICS, 2021, 28 (06) :835-848