Identification of geometric parameters of drawbead in metal forming processes

被引:6
作者
Han, LF
Li, GY
Han, X [1 ]
Zhong, ZH
机构
[1] Hunan Univ, Key Lab Minist Educ, Changsha 410082, Peoples R China
[2] Xiangtan Univ, Coll Mech Engn, Xiangtan 411105, Peoples R China
关键词
drawbead; neural network; genetic algorithm; inverse problem; computational inverse technique;
D O I
10.1080/17415970500397101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A computational inverse technique is presented for identification of geometric parameters of drawbead in sheet forming processes. The explicit dynamic finite element method (FEM) is employed as the forward solver to calculate the maximal effective stress, maximal effective strain and maximal thinning ratio of sheet thickness for known drawbead geometric parameters. A neural network (NN) is adopted as the inverse operator to determine the geometric parameters of circular drawbead. A sample design method with the strategy of updating training sample set is developed for the fast convergence in the training process of NN model. Once the training sample set is updated, the NN structure will be optimized using the genetic algorithm (GA). The numerical examples are presented to demonstrate the efficiency of the technique.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
[21]   Study on process parameters optimization of sheet metal forming based on PFEA/ANN/GA [J].
Huang, JH ;
Rao, JJ ;
Li, XF .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2003, 19 :9-12
[22]   EXPERIMENTAL DETERMINATION OF THE DRAW BEAD COEFFICIENT OF FRICTION OF CuZn SHEETS IN SHEET METAL FORMING PROCESSES [J].
Trzepiecinski, Tomasz ;
Luiz, Valmir Dias ;
Szpunar, Marcin .
ACTA METALLURGICA SLOVACA, 2023, 29 (03) :123-129
[23]   A new optimization method for sheet metal forming processes based on an iterative learning control model [J].
Qiuchong Zhang ;
Yuqi Liu ;
Zhibing Zhang .
The International Journal of Advanced Manufacturing Technology, 2016, 85 :1063-1075
[24]   Application of the Kalai-Smorodinsky approach in multi-objective optimization of metal forming processes [J].
Iorio, Lorenzo ;
Fourment, Lionel ;
Marie, Stephane ;
Strano, Matteo .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2017, 10 (04) :515-526
[25]   A new optimization method for sheet metal forming processes based on an iterative learning control model [J].
Zhang, Qiuchong ;
Liu, Yuqi ;
Zhang, Zhibing .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 85 (5-8) :1063-1075
[26]   A 3D FEM-Based Numerical Analysis of the Sheet Metal Strip Flowing Through Drawbead Simulator [J].
Trzepiecinski, Tomasz ;
Fejkiel, Romuald .
METALS, 2020, 10 (01)
[27]   Stochastic optimisation-based methods for the identification of the physical parameters of a metal hydride tank [J].
Suarez, S. H. ;
Chabane, D. ;
N'Diaye, A. ;
Ait-Amirat, Y. ;
Djerdir, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 :178-189
[28]   Application of Machine Learning to Bending Processes and Material Identification [J].
Cruz, Daniel J. ;
Barbosa, Manuel R. ;
Santos, Abel D. ;
Miranda, Sara S. ;
Amaral, Rui L. .
METALS, 2021, 11 (09)
[29]   Determining optimal parameters for stereolithography processes via genetic algorithm [J].
Cho, HS ;
Park, WS ;
Choi, BW ;
Leu, MC .
JOURNAL OF MANUFACTURING SYSTEMS, 2000, 19 (01) :18-27
[30]   The Process Parameters Modeling and Experimental Study Based on BP Neural Network for Laser Direct Rapid Forming Metal Parts [J].
Wang, Jianbin ;
Yin, Jishu ;
Chen, Binghuang .
ADVANCED MANUFACTURING TECHNOLOGY, PTS 1, 2, 2011, 156-157 :737-741