Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene

被引:296
作者
Wei, Yujie [1 ]
Wang, Baoling [1 ]
Wu, Jiangtao [1 ]
Yang, Ronggui [2 ]
Dunn, Martin L. [2 ]
机构
[1] Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China
[2] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
Bending rigidity; Gaussian bending stiffness; graphene; Helfrich Hamiltonian; density functional theory; TOTAL-ENERGY CALCULATIONS; CARBON; STRENGTH;
D O I
10.1021/nl303168w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bending rigidity and Gaussian bending stiffness are the two key parameters that govern the rippling of suspended graphene-an unavoidable phenomenon of two-dimensional materials when subject to a thermal or mechanical field. A reliable determination about these two parameters is of significance for both the design and the manipulation of graphene morphology for engineering applications. By combining the density functional theory calculations of energies of fullerenes and single wall carbon nanotubes with the configurational energy of membranes determined by Helfrich Hamiltonian, we have designed a theoretical approach to accurately determine the bending rigidity and Gaussian bending stiffness of single-layered graphene. The bending rigidity and Gaussian bending stiffness of single-layered graphene are 1.44 eV (2.31 x 10(-19) N m) and -1.52 eV (2.43 x 10(-19) N m), respectively. The bending rigidity is close to the experimental result. Interestingly, the bending stiffness of graphene is close to that of lipid bilayers of cells about 1-2 eV, which might mechanically justify biological applications of graphene.
引用
收藏
页码:26 / 30
页数:5
相关论文
共 40 条
[1]   Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule [J].
Arroyo, M ;
Belytschko, T .
PHYSICAL REVIEW B, 2004, 69 (11)
[2]   Elastic properties of hydrogenated graphene [J].
Cadelano, Emiliano ;
Palla, Pier Luca ;
Giordano, Stefano ;
Colombo, Luciano .
PHYSICAL REVIEW B, 2010, 82 (23)
[3]   Nonlinear Elasticity of Monolayer Graphene [J].
Cadelano, Emiliano ;
Palla, Pier Luca ;
Giordano, Stefano ;
Colombo, Luciano .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[4]   BEYOND C-60 - THE HIGHER FULLERENES [J].
DIEDERICH, F ;
WHETTEN, RL .
ACCOUNTS OF CHEMICAL RESEARCH, 1992, 25 (03) :119-126
[5]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[6]   Graphene Oxide and Lipid Membranes: Interactions and Nanocomposite Structures [J].
Frost, Rickard ;
Jonsson, Gustav Edman ;
Chakarov, Dinko ;
Svedhem, Sofia ;
Kasemo, Bengt .
NANO LETTERS, 2012, 12 (07) :3356-3362
[7]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[8]   Generating quantizing pseudomagnetic fields by bending graphene ribbons [J].
Guinea, F. ;
Geim, A. K. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
PHYSICAL REVIEW B, 2010, 81 (03)
[9]   ELASTIC PROPERTIES OF LIPID BILAYERS - THEORY AND POSSIBLE EXPERIMENTS [J].
HELFRICH, W .
ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1973, C 28 (11-1) :693-703
[10]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58