miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients

被引:609
作者
Lanczky, Andras [1 ]
Nagy, Adam [1 ,2 ]
Bottai, Giulia [3 ]
Munkacsy, Gyongyi [1 ,4 ]
Szabo, Andras [2 ]
Santarpia, Libero [3 ]
Gyorffy, Balazs [1 ,2 ]
机构
[1] MTA TTK Lendulet Canc Biomarker Res Grp, Magyar Tudosok Korutja 2, H-1117 Budapest, Hungary
[2] Semmelweis Univ, Dept Pediat, Budapest, Hungary
[3] Humanitas Clin & Res Inst, Oncol Expt Therapeut Unit, Via Manzoni 113, I-20089 Rozzano Milan, Italy
[4] MTA SE Pediat & Nephrol Res Grp, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Breast cancer; Biomarkers; MicroRNAs; Gene expression; Prognosis; Survival; MICROARRAY DATA; ONLINE TOOL; BIOMARKERS; MICRORNAS; THERAPY; DYSREGULATION; PROGNOSIS; PATHWAYS; MARKERS;
D O I
10.1007/s10549-016-4013-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The proper validation of prognostic biomarkers is an important clinical issue in breast cancer research. MicroRNAs (miRNAs) have emerged as a new class of promising breast cancer biomarkers. In the present work, we developed an integrated online bioinformatic tool to validate the prognostic relevance of miRNAs in breast cancer. A database was set up by searching the GEO, EGA, TCGA, and PubMed repositories to identify datasets with published miRNA expression and clinical data. Kaplan-Meier survival analysis was performed to validate the prognostic value of a set of 41 previously published survival-associated miRNAs. All together 2178 samples from four independent datasets were integrated into the system including the expression of 1052 distinct human miRNAs. In addition, the web-tool allows for the selection of patients, which can be filtered by receptors status, lymph node involvement, histological grade, and treatments. The complete analysis tool can be accessed online at: . We used this tool to analyze a large number of deregulated miRNAs associated with breast cancer features and outcome, and confirmed the prognostic value of 26 miRNAs. A significant correlation in three out of four datasets was validated only for miR-29c and miR-101. In summary, we established an integrated platform capable to mine all available miRNA data to perform a survival analysis for the identification and validation of prognostic miRNA markers in breast cancer.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 32 条
  • [1] SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis
    Aguirre-Gamboa, Raul
    Trevino, Victor
    [J]. BIOINFORMATICS, 2014, 30 (11) : 1630 - 1632
  • [2] MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets
    Antonov, A. V.
    Knight, R. A.
    Melino, G.
    Barlev, N. A.
    Tsvetkov, P. O.
    [J]. CELL DEATH AND DIFFERENTIATION, 2013, 20 (02) : 367 - 367
  • [3] MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer
    Bertoli, Gloria
    Cava, Claudia
    Castiglioni, Isabella
    [J]. THERANOSTICS, 2015, 5 (10): : 1122 - 1143
  • [4] MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype
    Blenkiron, Cherie
    Goldstein, Leonard D.
    Thorne, Natalie P.
    Spiteri, Inmaculada
    Chin, Suet-Feung
    Dunning, Mark J.
    Barbosa-Morais, Nuno L.
    Teschendorff, Andrew E.
    Green, Andrew R.
    Ellis, Ian O.
    Tavare, Simon
    Caldas, Carlos
    Miska, Eric A.
    [J]. GENOME BIOLOGY, 2007, 8 (10)
  • [5] microRNA-Associated Progression Pathways and Potential Therapeutic Targets Identified by Integrated mRNA and microRNA Expression Profiling in Breast Cancer
    Buffa, Francesca M.
    Camps, Carme
    Winchester, Laura
    Snell, Cameron E.
    Gee, Harriet E.
    Sheldon, Helen
    Taylor, Marian
    Harris, Adrian L.
    Ragoussis, Jiannis
    [J]. CANCER RESEARCH, 2011, 71 (17) : 5635 - 5645
  • [6] miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer
    Chen, Bo
    Tang, Hailin
    Liu, Xiaoping
    Liu, Peng
    Yang, Lu
    Xie, Xinhua
    Ye, Feng
    Song, Cailu
    Xie, Xiaoming
    Wei, Weidong
    [J]. CANCER LETTERS, 2015, 356 (02) : 410 - 417
  • [7] WBSMDA: Within and Between Score for MiRNA-Disease Association prediction
    Chen, Xing
    Yan, Chenggang Clarence
    Zhang, Xu
    You, Zhu-Hong
    Deng, Lixi
    Liu, Ying
    Zhang, Yongdong
    Dai, Qionghai
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [8] MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients
    De Mattos-Arruda, Leticia
    Bottai, Giulia
    Nuciforo, Paolo G.
    Di Tommaso, Luca
    Giovannetti, Elisa
    Peg, Vicente
    Losurdo, Agnese
    Perez-Garcia, Jose
    Masci, Giovanna
    Corsi, Fabio
    Cortes, Javier
    Seoane, Joan
    Calin, George A.
    Santarpia, Libero
    [J]. ONCOTARGET, 2015, 6 (35) : 37269 - 37280
  • [9] Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control
    de Rinaldis, Emanuele
    Gazinska, Patrycja
    Mera, Anca
    Modrusan, Zora
    Fedorowicz, Grazyna M.
    Burford, Brian
    Gillett, Cheryl
    Marra, Pierfrancesco
    Grigoriadis, Anita
    Dornan, David
    Holmberg, Lars
    Pinder, Sarah
    Tutt, Andrew
    [J]. BMC GENOMICS, 2013, 14
  • [10] Emerging Biomarkers and New Understanding of Traditional Markers in Personalized Therapy for Breast Cancer
    Dowsett, Mitch
    Dunbier, Anita K.
    [J]. CLINICAL CANCER RESEARCH, 2008, 14 (24) : 8019 - 8026