miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients

被引:619
作者
Lanczky, Andras [1 ]
Nagy, Adam [1 ,2 ]
Bottai, Giulia [3 ]
Munkacsy, Gyongyi [1 ,4 ]
Szabo, Andras [2 ]
Santarpia, Libero [3 ]
Gyorffy, Balazs [1 ,2 ]
机构
[1] MTA TTK Lendulet Canc Biomarker Res Grp, Magyar Tudosok Korutja 2, H-1117 Budapest, Hungary
[2] Semmelweis Univ, Dept Pediat, Budapest, Hungary
[3] Humanitas Clin & Res Inst, Oncol Expt Therapeut Unit, Via Manzoni 113, I-20089 Rozzano Milan, Italy
[4] MTA SE Pediat & Nephrol Res Grp, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Breast cancer; Biomarkers; MicroRNAs; Gene expression; Prognosis; Survival; MICROARRAY DATA; ONLINE TOOL; BIOMARKERS; MICRORNAS; THERAPY; DYSREGULATION; PROGNOSIS; PATHWAYS; MARKERS;
D O I
10.1007/s10549-016-4013-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The proper validation of prognostic biomarkers is an important clinical issue in breast cancer research. MicroRNAs (miRNAs) have emerged as a new class of promising breast cancer biomarkers. In the present work, we developed an integrated online bioinformatic tool to validate the prognostic relevance of miRNAs in breast cancer. A database was set up by searching the GEO, EGA, TCGA, and PubMed repositories to identify datasets with published miRNA expression and clinical data. Kaplan-Meier survival analysis was performed to validate the prognostic value of a set of 41 previously published survival-associated miRNAs. All together 2178 samples from four independent datasets were integrated into the system including the expression of 1052 distinct human miRNAs. In addition, the web-tool allows for the selection of patients, which can be filtered by receptors status, lymph node involvement, histological grade, and treatments. The complete analysis tool can be accessed online at: . We used this tool to analyze a large number of deregulated miRNAs associated with breast cancer features and outcome, and confirmed the prognostic value of 26 miRNAs. A significant correlation in three out of four datasets was validated only for miR-29c and miR-101. In summary, we established an integrated platform capable to mine all available miRNA data to perform a survival analysis for the identification and validation of prognostic miRNA markers in breast cancer.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 32 条
[1]   SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis [J].
Aguirre-Gamboa, Raul ;
Trevino, Victor .
BIOINFORMATICS, 2014, 30 (11) :1630-1632
[2]   MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets [J].
Antonov, A. V. ;
Knight, R. A. ;
Melino, G. ;
Barlev, N. A. ;
Tsvetkov, P. O. .
CELL DEATH AND DIFFERENTIATION, 2013, 20 (02) :367-367
[3]   MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer [J].
Bertoli, Gloria ;
Cava, Claudia ;
Castiglioni, Isabella .
THERANOSTICS, 2015, 5 (10) :1122-1143
[4]   MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype [J].
Blenkiron, Cherie ;
Goldstein, Leonard D. ;
Thorne, Natalie P. ;
Spiteri, Inmaculada ;
Chin, Suet-Feung ;
Dunning, Mark J. ;
Barbosa-Morais, Nuno L. ;
Teschendorff, Andrew E. ;
Green, Andrew R. ;
Ellis, Ian O. ;
Tavare, Simon ;
Caldas, Carlos ;
Miska, Eric A. .
GENOME BIOLOGY, 2007, 8 (10)
[5]   microRNA-Associated Progression Pathways and Potential Therapeutic Targets Identified by Integrated mRNA and microRNA Expression Profiling in Breast Cancer [J].
Buffa, Francesca M. ;
Camps, Carme ;
Winchester, Laura ;
Snell, Cameron E. ;
Gee, Harriet E. ;
Sheldon, Helen ;
Taylor, Marian ;
Harris, Adrian L. ;
Ragoussis, Jiannis .
CANCER RESEARCH, 2011, 71 (17) :5635-5645
[6]   miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer [J].
Chen, Bo ;
Tang, Hailin ;
Liu, Xiaoping ;
Liu, Peng ;
Yang, Lu ;
Xie, Xinhua ;
Ye, Feng ;
Song, Cailu ;
Xie, Xiaoming ;
Wei, Weidong .
CANCER LETTERS, 2015, 356 (02) :410-417
[7]   WBSMDA: Within and Between Score for MiRNA-Disease Association prediction [J].
Chen, Xing ;
Yan, Chenggang Clarence ;
Zhang, Xu ;
You, Zhu-Hong ;
Deng, Lixi ;
Liu, Ying ;
Zhang, Yongdong ;
Dai, Qionghai .
SCIENTIFIC REPORTS, 2016, 6
[8]   MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients [J].
De Mattos-Arruda, Leticia ;
Bottai, Giulia ;
Nuciforo, Paolo G. ;
Di Tommaso, Luca ;
Giovannetti, Elisa ;
Peg, Vicente ;
Losurdo, Agnese ;
Perez-Garcia, Jose ;
Masci, Giovanna ;
Corsi, Fabio ;
Cortes, Javier ;
Seoane, Joan ;
Calin, George A. ;
Santarpia, Libero .
ONCOTARGET, 2015, 6 (35) :37269-37280
[9]   Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control [J].
de Rinaldis, Emanuele ;
Gazinska, Patrycja ;
Mera, Anca ;
Modrusan, Zora ;
Fedorowicz, Grazyna M. ;
Burford, Brian ;
Gillett, Cheryl ;
Marra, Pierfrancesco ;
Grigoriadis, Anita ;
Dornan, David ;
Holmberg, Lars ;
Pinder, Sarah ;
Tutt, Andrew .
BMC GENOMICS, 2013, 14
[10]   Emerging Biomarkers and New Understanding of Traditional Markers in Personalized Therapy for Breast Cancer [J].
Dowsett, Mitch ;
Dunbier, Anita K. .
CLINICAL CANCER RESEARCH, 2008, 14 (24) :8019-8026