On the Grundy and b-Chromatic Numbers of a Graph

被引:25
作者
Havet, Frederic [1 ,2 ]
Sampaio, Leonardo [1 ,2 ]
机构
[1] UNS, CNRS, I3S, Projet Mascotte, F-06902 Sophia Antipolis, France
[2] INRIA, F-06902 Sophia Antipolis, France
关键词
Colouring; Online colouring; Greedy colouring; b-Colourings; NP-completeness; Fixed parameter complexity;
D O I
10.1007/s00453-011-9604-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Grundy number of a graph G, denoted by I"(G), is the largest k such that G has a greedy k-colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertexes of G. The b-chromatic number of a graph G, denoted by chi (b) (G), is the largest k such that G has a b-colouring with k colours, that is a colouring in which each colour class contains a b-vertex, a vertex with neighbours in all other colour classes. Trivially chi (b) (G),I"(G)a parts per thousand currency sign Delta(G)+1. In this paper, we show that deciding if I"(G)a parts per thousand currency sign Delta(G) is NP-complete even for a bipartite graph G. We then show that deciding if I"(G)a parts per thousand yen|V(G)|-k or if chi (b) (G)a parts per thousand yen|V(G)|-k are fixed parameter tractable problems with respect to the parameter k.
引用
收藏
页码:885 / 899
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 1995, WILEY INTERSCIENCE S
[2]  
Beutelspacher A., 1984, ARS COMBINATORICA, V18, P201
[3]   UPPER BOUND OF A GRAPHS CHROMATIC NUMBER, DEPENDING ON GRAPHS DEGREE AND DENSITY [J].
BORODIN, OV ;
KOSTOCHKA, AV .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) :247-250
[4]   On colouring the nodes of a network [J].
Brooks, RL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 :194-197
[5]  
Downey R. G., 1999, MG COMP SCI
[6]  
Elghazel H, 2006, LECT NOTES ARTIF INT, V4203, P473
[7]   Uniquely colourable graphs and the hardness of colouring graphs of large girth [J].
Emden-Weinert, T ;
Hougardy, S ;
Kreuter, B .
COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (04) :375-386
[8]   (Δ-k)-critical graphs [J].
Farzad, B ;
Molloy, M ;
Reed, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) :173-185
[9]  
Gaceb Djamel, 2009, 2009 10th International Conference on Document Analysis and Recognition (ICDAR), P261, DOI 10.1109/ICDAR.2009.72
[10]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1