Enhancement of the magnetocaloric effect in composites: Experimental validation

被引:57
作者
Paticopoulos, S. C. [1 ]
Caballero-Flores, R. [1 ]
Franco, V. [1 ]
Blazquez, J. S. [1 ]
Conde, A. [1 ]
Knipling, K. E. [2 ]
Willard, M. A. [2 ]
机构
[1] Univ Seville, CSIC, ICMSE, Dpto Fis Mat Condensada, E-41080 Seville, Spain
[2] USN, Res Lab, Multifunct Mat Branch, Washington, DC 20375 USA
关键词
Composites; Disordered systems; Magnetocaloric effect; Phase transitions;
D O I
10.1016/j.ssc.2012.05.015
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Recent calculations have shown that the refrigerant capacity (RC) of magnetic refrigerants can be enhanced using multiphase materials or composites, which expand the temperature range over which a significant magnetic entropy change can be obtained. This work is a systematic experimental validation of the improvement of RC (RCI) using layered composites comprised of two Fe88-2yCoyNiyZr7B4Cu1 amorphous alloy constituents, with y=8.25 and y=11 compositions. RCI has a nonmonotonic dependence on the applied magnetic field H and the fraction x of the two constituent phases. In contrast to common assumptions, the composite has a smaller RCI than its constituent phases for small values of H and x, and there are critical values of each for which RCI is maximized. This work demonstrates the outstanding agreement between the experimental results and the continuous curves predicted by numerical calculations, indicating that this approach can be used to design magnetic refrigerant materials with enhanced magnetocaloric response for moderate magnetic fields. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1590 / 1594
页数:5
相关论文
共 17 条
[1]   Developments in magnetocaloric refrigeration [J].
Brück, E .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (23) :R381-R391
[2]   Optimization of the refrigerant capacity in multiphase magnetocaloric materials [J].
Caballero-Flores, R. ;
Franco, V. ;
Conde, A. ;
Knipling, K. E. ;
Willard, M. A. .
APPLIED PHYSICS LETTERS, 2011, 98 (10)
[3]   Influence of Co and Ni addition on the magnetocaloric effect in Fe88-2xCoxNixZr7B4Cu1 soft magnetic amorphous alloys [J].
Caballero-Flores, R. ;
Franco, V. ;
Conde, A. ;
Knipling, K. E. ;
Willard, M. A. .
APPLIED PHYSICS LETTERS, 2010, 96 (18)
[4]  
Caballero-Flores R., J NANOSCI N IN PRESS
[5]   Spin-glass behavior and magnetocaloric effect in Tb-based bulk metallic glass [J].
Du, J. ;
Zheng, Q. ;
Bruck, E. ;
Buschow, K. H. J. ;
Cui, W. B. ;
Feng, W. J. ;
Zhang, Z. D. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (05) :413-417
[6]   The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models [J].
Franco, V. ;
Blazquez, J. S. ;
Ingale, B. ;
Conde, A. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 42, 2012, 42 :305-342
[7]   Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials [J].
Franco, V. ;
Conde, A. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2010, 33 (03) :465-473
[8]   A universal curve for the magnetocaloric effect:: an analysis based on scaling relations [J].
Franco, V. ;
Conde, A. ;
Romero-Enrique, J. M. ;
Blazquez, J. S. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (28)
[9]   Recent developments in magnetocaloric materials [J].
Gschneidner, KA ;
Pecharsky, VK ;
Tsokol, AO .
REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (06) :1479-1539
[10]   Magnetocaloric materials [J].
Gschneidner, KA ;
Pecharsky, VK .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :387-429