ON LOGARITHMIC COEFFICIENTS OF SOME CLOSE-TO-CONVEX FUNCTIONS

被引:47
作者
Ali, Md Firoz [1 ]
Vasudevarao, A. [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
关键词
Univalent; starlike; convex; close-to-convex functions; logarithmic coefficient;
D O I
10.1090/proc/13817
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The logarithmic coefficients gamma(n) of an analytic and univalent function f in the unit disk D = {z is an element of C : vertical bar z vertical bar < 1} with the normalization f(0) = 0 = f'(0) - 1 are defined by log f(z)/z = 2 Sigma(infinity)(n=1) gamma(n)z(n). Recently, D. K. Thomas [Proc. Amer. Math. Soc. 144 (2016), 1681-1687] proved that vertical bar gamma(3)vertical bar <= 7/12 for functions in a subclass of close-to-convex functions (with argument 0) and claimed that the estimate is sharp by providing a form of an extremal function. In the present paper, we point out that such extremal functions do not exist and the estimate is not sharp by providing a much more improved bound for the whole class of close-to-convex functions (with argument 0). We also determine a sharp upper bound of vertical bar gamma(3)vertical bar for close-to-convex functions (with argument 0) with respect to the Koebe function.
引用
收藏
页码:1131 / 1142
页数:12
相关论文
共 12 条
[1]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[2]  
Duren Peter L., 1983, UNIVALENT FUNCTIONS, V259
[3]   LOGARITHMIC COEFFICIENTS OF UNIVALENT-FUNCTIONS [J].
DUREN, PL ;
LEUNG, YJ .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :36-43
[4]   On the logarithmic coefficients of close-to-convex functions [J].
Elhosh, MM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :1-6
[5]   LINEARIZATION MODELS FOR PARABOLIC DYNAMICAL SYSTEMS VIA ABEL'S FUNCTIONAL EQUATION [J].
Elin, Mark ;
Khavinson, Dmitry ;
Reich, Simeon ;
Shoikhet, David .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (02) :439-472
[6]  
Girela D, 2000, ANN ACAD SCI FENN-M, V25, P337
[7]   ON SCHLICHT MAPPINGS TO DOMAINS CONVEX IN ONE DIRECTION [J].
HENGARTNER, W ;
SCHOBER, G .
COMMENTARII MATHEMATICI HELVETICI, 1970, 45 (03) :303-+
[9]   THE FEKETE-SZEGO PROBLEM FOR CLOSE-TO-CONVEX FUNCTIONS WITH RESPECT TO THE KOEBE FUNCTION [J].
Kowalczyk, Bogumila ;
Lecko, Adam .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (05) :1571-1583
[10]   EARLY COEFFICIENTS OF THE INVERSE OF A REGULAR CONVEX FUNCTION [J].
LIBERA, RJ ;
ZLOTKIEWICZ, EJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (02) :225-230