Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

被引:272
作者
Serb, Alexander [1 ]
Bill, Johannes [2 ,3 ]
Khiat, Ali [1 ]
Berdan, Radu [4 ]
Legenstein, Robert [2 ]
Prodromakis, Themis [1 ]
机构
[1] Univ Southampton, Elect & Comp Sci Dept, Southampton SO17 1BJ, Hants, England
[2] Graz Univ Technol, Inst Theoret Comp Sci, A-8010 Graz, Austria
[3] Heidelberg Univ, Dept Phys & Astron, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
[4] Imperial Coll, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
TAKE-ALL CIRCUIT; TIMING DEPENDENT PLASTICITY; MEMORY; IMPLEMENTATION; NEURONS; DEVICES; SYSTEM;
D O I
10.1038/ncomms12611
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.
引用
收藏
页数:9
相关论文
共 63 条
[1]   High precision analogue memristor state tuning [J].
Berdan, R. ;
Prodromakis, T. ;
Toumazou, C. .
ELECTRONICS LETTERS, 2012, 48 (18) :1105-1106
[2]   Emulating short-term synaptic dynamics with memristive devices [J].
Berdan, Radu ;
Vasilaki, Eleni ;
Khiat, Ali ;
Indiveri, Giacomo ;
Serb, Alexandru ;
Prodromakis, Themistoklis .
SCIENTIFIC REPORTS, 2016, 6
[3]   A μ-Controller-Based System for Interfacing Selectorless RRAM Crossbar Arrays [J].
Berdan, Radu ;
Serb, Alexander ;
Khiat, Ali ;
Regoutz, Anna ;
Papavassiliou, Christos ;
Prodromakis, Themis .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (07) :2190-2196
[4]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[5]   A compound memristive synapse model for statistical learning through STDP in spiking neural networks [J].
Bill, Johannes ;
Legenstein, Robert .
FRONTIERS IN NEUROSCIENCE, 2014, 8
[6]   Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition [J].
Bill, Johannes ;
Buesing, Lars ;
Habenschuss, Stefan ;
Nessler, Bernhard ;
Maass, Wolfgang ;
Legenstein, Robert .
PLOS ONE, 2015, 10 (08)
[7]  
Burr G. W., 2013, 2013 Symposium on VLSI Technology, pT66
[8]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[9]   A HIGH-PRECISION VLSI WINNER-TAKE-ALL CIRCUIT FOR SELF-ORGANIZING NEURAL NETWORKS [J].
CHOI, J ;
SHEU, BJ .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1993, 28 (05) :576-584
[10]   MEMRISTIVE DEVICES AND SYSTEMS [J].
CHUA, LO ;
KANG, SM .
PROCEEDINGS OF THE IEEE, 1976, 64 (02) :209-223