Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier

被引:20
作者
Kushibiki, T [1 ]
Tabata, Y [1 ]
机构
[1] Kyoto Univ, Inst Frontier Med Sci, Dept Biomath, Sakyo Ku, Kyoto 6068507, Japan
关键词
poly(ethylene glycol); gelatin; complex; gene delivery;
D O I
10.1163/156856205774472326
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The objective of this study was to prepare cationized gelatins grafted with poly(ethylene glycol) (PEG) (PEG-cationized gelatin) and evaluate the in vivo efficiency as a non-viral gene carrier. Cationized gelatin was prepared by chemical introduction of ethylenediamine to the carboxyl groups of gelatin. PEG with one terminal of active ester group was coupled to the amino groups of cationized gelatin to prepare PEG-cationized gelatins. Electrophoretic experiments revealed that the PEG-cationized gelatin with low PEGylation degrees was complexed with a plasmid DNA of luciferase, in remarked contrast to that with high PEGylation degrees. When the plasmid DNA complexed with the cationized gelatin or PEG-cationized gelatin was mixed with deoxyribonuclease I (DNase I) in solution to evaluate the resistance to enzymatic degradation, stronger protection effect of the PEG-cationized gelatin was observed than that of the cationized gelatin. The complex of plasmid DNA and PEG-cationized gelatin had an apparent molecular size of about 300 nm and almost zero surface charge. These findings indicate that the PEG-cationized gelatin-plasmid DNA complex has a nano-order structure where the plasmid DNA is covered with PEG molecules. When the PEG-cationized gelatin-plasmid DNA complex was intramuscularly injected, the level of gene expression was significantly increased compared with the injection of plasmid DNA solution. It is concluded that the PEG-cationized gelatin was a promising non-viral gene carrier to enhance gene expression in vivo.
引用
收藏
页码:1447 / 1461
页数:15
相关论文
共 57 条
[1]   Full-speed mammalian genetics:: in vivo target validation in the drug discovery process [J].
Abuin, A ;
Holt, KH ;
Platt, KA ;
Sands, AT ;
Zambrowicz, BP .
TRENDS IN BIOTECHNOLOGY, 2002, 20 (01) :36-42
[2]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[3]   In vivo characteristics of cationic liposomes as delivery vectors for gene therapy [J].
Audouy, SAL ;
de Leij, LFMH ;
Hoekstra, D ;
Molema, G .
PHARMACEUTICAL RESEARCH, 2002, 19 (11) :1599-1605
[4]   Folate-PEG-folate-graft-polyethylenimine-based gene delivery [J].
Benns, JM ;
Maheshwari, A ;
Furgeson, DY ;
Mahato, RI ;
Kim, SW .
JOURNAL OF DRUG TARGETING, 2001, 9 (02) :123-+
[5]   Receptor targeting of adeno-associated virus vectors [J].
Büning, H ;
Ried, MU ;
Perabo, L ;
Gerner, FM ;
Huttner, NA ;
Enssle, J ;
Hallek, M .
GENE THERAPY, 2003, 10 (14) :1142-1151
[6]   Cationic liposomes for gene delivery:: From biophysics to biological applications [J].
de Lima, MCP ;
Neves, S ;
Filipe, A ;
Düzgünes, N ;
Simoes, S .
CURRENT MEDICINAL CHEMISTRY, 2003, 10 (14) :1221-1231
[7]   A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine:: Effect of molecular weight on transfection efficiency and cytotoxicity [J].
Fischer, D ;
Bieber, T ;
Li, YX ;
Elsässer, HP ;
Kissel, T .
PHARMACEUTICAL RESEARCH, 1999, 16 (08) :1273-1279
[8]   Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation [J].
Fukunaka, Y ;
Iwanaga, K ;
Morimoto, K ;
Kakemi, M ;
Tabata, Y .
JOURNAL OF CONTROLLED RELEASE, 2002, 80 (1-3) :333-343
[9]  
Gelse K., 2003, Current Gene Therapy, V3, P305, DOI 10.2174/1566523034578276
[10]   New class of polymers for the delivery of macromolecular therapeutics [J].
Gonzalez, H ;
Hwang, SJ ;
Davis, ME .
BIOCONJUGATE CHEMISTRY, 1999, 10 (06) :1068-1074