Electrical stimulation as a biomimicry tool for regulating muscle cell behavior

被引:67
作者
Ahadian, Samad [1 ]
Ostrovidov, Serge [1 ]
Hosseini, Vahid [2 ]
Kaji, Hirokazu [3 ]
Ramalingam, Murugan [1 ,4 ,5 ]
Bae, Hojae [6 ]
Khademhosseini, Ali [1 ,7 ,8 ,9 ,10 ,11 ]
机构
[1] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 980, Japan
[2] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Lab Appl Mechanobiol, Zurich, Switzerland
[3] Tohoku Univ, Grad Sch Engn, Dept Bioengn & Robot, Sendai, Miyagi 980, Japan
[4] Inst Stem Cell Biol & Regenerat Med, Ctr Stem Cell Res, Vellore, Tamil Nadu, India
[5] Univ Strasbourg, Fac Chirurg Dent, INSERM, U977, Strasbourg, France
[6] Konkuk Univ, Dept Bioind Technol, Coll Anim Biosci & Technol, Seoul, South Korea
[7] Harvard Univ, Sch Med, Brigham & Womens Hosp, Ctr Biomed Engn,Dept Med, Cambridge, MA 02138 USA
[8] MIT, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[9] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[10] Kyung Hee Univ, Sch Dent, Dept Maxillofacial Biomed Engn, Seoul, South Korea
[11] Kyung Hee Univ, Sch Dent, Inst Oral Biol, Seoul, South Korea
关键词
Electrical stimulation; muscle cells; alignment; differentiation; muscle tissue engineering; bio-actuators; drug-screening models; ENGINEERED SKELETAL-MUSCLE; TISSUE; ACTUATORS; SUBSTRATE; HYDROGEL; CULTURES; CARDIOMYOCYTES; CONTRACTION; COMPOSITES; BIOREACTOR;
D O I
10.4161/org.25121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 51 条
  • [1] A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue
    Ahadian, Samad
    Ramon-Azcon, Javier
    Ostrovidov, Serge
    Camci-Unal, Gulden
    Kaji, Hirokazu
    Ino, Kosuke
    Shiku, Hitoshi
    Khademhosseini, Ali
    Matsue, Tomokazu
    [J]. BIOMEDICAL MICRODEVICES, 2013, 15 (01) : 109 - 115
  • [2] Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue
    Ahadian, Samad
    Ramon-Azcon, Javier
    Ostrovidov, Serge
    Camci-Unal, Gulden
    Hosseini, Vahid
    Kaji, Hirokazu
    Ino, Kosuke
    Shiku, Hitoshi
    Khademhosseini, Ali
    Matsue, Tomokazu
    [J]. LAB ON A CHIP, 2012, 12 (18) : 3491 - 3503
  • [3] Andersson D.C., 2012, Muscle Fundamental Biology and Mechanisms of Disease, P153, DOI [10.1016/B978-0-12-381510-1.00012-0, DOI 10.1016/B978-0-12-381510-1.00012-0]
  • [4] Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes
    Au, Hoi Ting H.
    Cheng, Irene
    Chowdhury, Mohammad F.
    Radisic, Milica
    [J]. BIOMATERIALS, 2007, 28 (29) : 4277 - 4293
  • [5] Skeletal muscle tissue engineering
    Bach, AD
    Beier, JP
    Stern-Staeter, J
    Horch, RE
    [J]. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2004, 8 (04): : 413 - 422
  • [6] Balint R, 2013, TISSUE ENG PART B-RE, V19, P48, DOI [10.1089/ten.TEB.2012.0183, 10.1089/ten.teb.2012.0183]
  • [7] Influence of Substrate Stiffness on the Phenotype of Heart Cells
    Bhana, Bashir
    Iyer, Rohin K.
    Chen, Wen Li Kelly
    Zhao, Ruogang
    Sider, Krista L.
    Likhitpanichkul, Morakot
    Simmons, Craig A.
    Radisic, Milica
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2010, 105 (06) : 1148 - 1160
  • [8] MYOSIN SYNTHESIS INCREASED BY ELECTRICAL-STIMULATION OF SKELETAL-MUSCLE CELL-CULTURES
    BREVET, A
    PINTO, E
    PEACOCK, J
    STOCKDALE, FE
    [J]. SCIENCE, 1976, 193 (4258) : 1152 - 1154
  • [9] Development of Miniaturized Walking Biological Machines
    Chan, Vincent
    Park, Kidong
    Collens, Mitchell B.
    Kong, Hyunjoon
    Saif, Taher A.
    Bashir, Rashid
    [J]. SCIENTIFIC REPORTS, 2012, 2
  • [10] Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography
    Chan, Vincent
    Jeong, Jae Hyun
    Bajaj, Piyush
    Collens, Mitchell
    Saif, Taher
    Kong, Hyunjoon
    Bashir, Rashid
    [J]. LAB ON A CHIP, 2012, 12 (01) : 88 - 98