Cyclotron frequency in the quantum clock geometry

被引:0
作者
Mignemi, S. [1 ,2 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Viale Merello 92, I-09123 Cagliari, Italy
[2] Ist Nazl Fis Nucl, Sez Cagliari, I-09042 Monserrato, Italy
关键词
Noncommutative geometry; quantum clock; cyclotron frequency; RELATIVITY; PARTICLES; VELOCITY;
D O I
10.1142/S021773232050265X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the corrections to the orbital period of a particle in a constant magnetic field, driven by the model of noncommutative geometry recently associated to a quantum clock. The effects are extremely small, but in principle detectable.
引用
收藏
页数:6
相关论文
共 14 条
[1]   Speed of particles and a relativity of locality in κ-Minkowski quantum spacetime [J].
Amelino-Camelia, Giovanni ;
Loret, Niccolo ;
Rosati, Giacomo .
PHYSICS LETTERS B, 2011, 700 (02) :150-156
[2]   Doubly-Special Relativity: Facts, Myths and Some Key Open Issues [J].
Amelino-Camelia, Giovanni .
SYMMETRY-BASEL, 2010, 2 (01) :230-271
[3]  
Aschieri P, 2009, LECT NOTES PHYS, V774, P1, DOI 10.1007/978-3-540-89793-4
[4]   Quantum clock: A critical discussion on spacetime [J].
Burderi, Luciano ;
Di Salvo, Tiziana ;
Iaria, Rosario .
PHYSICAL REVIEW D, 2016, 93 (06)
[5]   Velocity of particles in Doubly Special Relativity [J].
Daszkiewicz, M ;
Imilkowska, K ;
Kowalski-Glikman, J .
PHYSICS LETTERS A, 2004, 323 (5-6) :345-350
[6]  
Dirac P.A.M., 1966, Lectures on Quantum Mechanics
[7]   Macroscopic body in the Snyder space and minimal length estimation [J].
Gnatenko, Kh. P. ;
Tkachuk, V. M. .
EPL, 2019, 125 (05)
[8]   Definition of velocity in doubly special relativity theories [J].
Kosinski, P ;
Maslanka, P .
PHYSICAL REVIEW D, 2003, 68 (06)
[9]   Q-DEFORMATION OF POINCARE ALGEBRA [J].
LUKIERSKI, J ;
RUEGG, H ;
NOWICKI, A ;
TOLSTOY, VN .
PHYSICS LETTERS B, 1991, 264 (3-4) :331-338
[10]   Noncommutative geometry of the quantum clock [J].
Mignemi, S. ;
Uras, N. .
PHYSICS LETTERS A, 2019, 383 (07) :585-588