Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence

被引:60
|
作者
Xie, Chenyue [1 ]
Wang, Jianchun [1 ]
Li, Ke [2 ]
Ma, Chao [3 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
[2] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
来源
PHYSICAL REVIEW E | 2019年 / 99卷 / 05期
基金
中国国家自然科学基金;
关键词
SUBGRID-SCALE-MODEL; NUMERICAL ERRORS; ENERGY-TRANSFER; BOUNDARY-LAYER; DATA-DRIVEN; DECONVOLUTION; REYNOLDS; INVARIANCE; SCHEMES; FLUX;
D O I
10.1103/PhysRevE.99.053113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A subgrid-scale (SGS) model for large-eddy simulation (LES) of compressible isotropic turbulence is constructed by using a data-driven framework. An artificial neural network (ANN) based on local stencil geometry is employed to predict the unclosed SGS terms. The input features are based on the first-order and second-order derivatives of filtered velocity and temperature which appear in the second-order Taylor approximation of the SGS stress and heat flux. It is shown that the proposed ANN-7 model performs better than the gradient model in the a priori test. The correlation coefficient is larger and the relative error is smaller for ANN-7 model as compared to those of the gradient model in the a priori test. In an a posteriori analysis, the performance of ANN-7 model shows advantage over the dynamic Smagorinsky model and dynamic mixed model in the prediction of spectra and structure functions of velocity and temperature, and instantaneous flow structures. Artificial neural network is a promising tool for understanding the physical fundamentals of SGS unclosed terms with further improvement.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Artificial neural network model for large-eddy simulation of compressible turbulence
    Xie C.
    Wang J.
    Wan M.
    Chen S.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (09):
  • [2] Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence
    Xie, Chenyue
    Wang, Jianchun
    Li, Hui
    Wan, Minping
    Chen, Shiyi
    PHYSICS OF FLUIDS, 2019, 31 (08)
  • [3] Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence
    Xie, Chenyue
    Wang, Jianchun
    Li, Hui
    Wan, Minping
    Chen, Shiyi
    AIP ADVANCES, 2020, 10 (01)
  • [4] Large-Eddy simulations of weakly compressible isotropic turbulence
    Shao, L
    Bertoglio, JP
    ADVANCES IN TURBULENCES VI, 1996, 36 : 287 - 290
  • [5] Artificial neural-network-based subgrid-scale model for large-eddy simulation of isotropic turbulence
    Yang, Lei
    Li, Dong
    Zhang, Kai
    Luo, Kun
    Fan, Jianren
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [6] Mixed subfilter-scale models for large-eddy simulation of decaying isotropic turbulence using an artificial neural network
    Li, Dong
    Yang, Lei
    Zhang, Kai
    Luo, Kun
    Fan, Jianren
    COMPUTERS & FLUIDS, 2025, 289
  • [7] Forced turbulence in large-eddy simulation of compressible magnetohydrodynamic turbulence
    Chernyshov, A. A.
    Karelsky, K. V.
    Petrosyan, A. S.
    PHYSICS OF PLASMAS, 2010, 17 (10)
  • [8] Large-eddy simulation of droplet-laden decaying isotropic turbulence using artificial neural networks
    Freund, Andreas
    Ferrante, Antonino
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 142
  • [9] Large-eddy simulation of magnetohydrodynamic turbulence in compressible fluid
    Chernyshov, AA
    Karelsky, KV
    Petrosyan, AS
    PHYSICS OF PLASMAS, 2006, 13 (03)
  • [10] Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence
    Xu, Dehao
    Wang, Jianchun
    Yu, Changping
    Chen, Shiyi
    JOURNAL OF FLUID MECHANICS, 2023, 960