Unified extension of variance bounds for integrated Pearson family

被引:3
作者
Afendras, Giorgos [1 ,2 ]
机构
[1] Univ Athens, Sect Stat, Dept Math, Athens 15784, Greece
[2] Univ Athens, OR, Athens 15784, Greece
关键词
Completeness; Derivatives of higher order; Fourier coefficients; Orthogonal polynomials; Parseval identity; Pearson family of distributions; Rodrigues-type formula; Variance bounds; INEQUALITIES; DISTRIBUTIONS;
D O I
10.1007/s10463-012-0388-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use some properties of orthogonal polynomials to provide a class of upper/lower variance bounds for a function of an absolutely continuous random variable , in terms of the derivatives of up to some order. The new bounds are better than the existing ones.
引用
收藏
页码:687 / 702
页数:16
相关论文
共 23 条
[1]   An extended Stein-type covariance identity for the Pearson family wit a applications to lower variance bounds [J].
Afendras, G. ;
Papadatos, N. ;
Papathanasiou, V. .
BERNOULLI, 2011, 17 (02) :507-529
[2]  
Afendras G., 2012, ARXIV11071754V3
[3]  
Afendras G., 2012, ARXIV12052903V1
[4]  
[Anonymous], 1993, Continuous Univariate Distributions, DOI DOI 10.1016/0167-9473(96)90015-8
[5]  
[Anonymous], 2006, STAT METHODOL
[6]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[7]   ON UPPER AND LOWER BOUNDS FOR THE VARIANCE OF A FUNCTION OF A RANDOM VARIABLE [J].
CACOULLOS, T .
ANNALS OF PROBABILITY, 1982, 10 (03) :799-809
[8]   ON UPPER-BOUNDS FOR THE VARIANCE OF FUNCTIONS OF RANDOM-VARIABLES [J].
CACOULLOS, T ;
PAPATHANASIOU, V .
STATISTICS & PROBABILITY LETTERS, 1985, 3 (04) :175-184
[9]  
Cacoullos T., 1989, STAT DATA ANAL INFER, P239
[10]  
Charalambides CA., 2002, Enumerative combinatorics