O(N3 log N) backprojection algorithm for the 3-D radon transform

被引:26
作者
Basu, S
Bresler, Y
机构
[1] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
backprojection; 3-D radon transform; fast algorithm; hierarchical; cone beam tomography;
D O I
10.1109/42.993127
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a novel backprojection algorithm for three-dimensional (3-D) radon transform data that requires O (N-3 log(2) N) operations for reconstruction of an N x N x N volume from O(N-2) plane-integral projections. Our algorithm uses a hierarchical decomposition of the 3-D radon transform to recursively decompose the backprojection operation. Simulations are presented demonstrating reconstruction quality comparable to the standard filtered backprojection, which requires O(N-5) computations under the same circumstances.
引用
收藏
页码:76 / 88
页数:13
相关论文
共 15 条
[1]   3-DIMENSIONAL RECONSTRUCTION FROM CONE-BEAM DATA IN O(N-3 LOG-N) TIME [J].
AXELSSON, C ;
DANIELSSON, PE .
PHYSICS IN MEDICINE AND BIOLOGY, 1994, 39 (03) :477-491
[2]   O(N2 log2 N) filtered backprojection reconstruction algorithm for tomography [J].
Basu, S ;
Bresler, Y .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (10) :1760-1773
[3]   A multilevel domain decomposition algorithm for fast O(N2 log N) reprojection of tomographic images [J].
Boag, A ;
Bresler, Y ;
Michielssen, E .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1573-1582
[4]  
Deans S., 1983, RADON TRANSFORM SOME
[5]  
GRANGEAT P, 1991, LECT NOTES MATH, V1497, P66
[6]  
MARR R, 1981, LECT NOTES MED INFOR
[7]  
Natterer F., 1986, The Mathematics of Computerized Tomography
[8]  
Oppenheim A. V., 1989, DISCRETE TIME SIGNAL
[9]   LOCALIZATION OF HARMONIC DECOMPOSITION OF THE RADON-TRANSFORM [J].
PALAMODOV, VP .
INVERSE PROBLEMS, 1995, 11 (05) :1025-1030
[10]   Quasi-bandlimited properties of radon transforms and their implications for increasing angular sampling densities [J].
Pan, XC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (03) :395-406