Intermittency in families of unimodal maps

被引:14
作者
Homburg, AJ
Young, T
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] Univ Utrecht, Dept Math, NL-3584 CD Utrecht, Netherlands
关键词
D O I
10.1017/S0143385702000093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider intermittency in one-parameter families of unimodal maps, induced by saddle node and boundary crisis bifurcations. In these bifurcations either a periodic orbit or a periodic interval disappears to give rise to chaotic bursts. We prove asymptotic formulae for the frequency with which orbits visit the region previously occupied by the attractor. For this, we extend Pianigiani's results on conditionally invariant measures for the logistic family to more general families.
引用
收藏
页码:203 / 225
页数:23
相关论文
共 22 条
[1]   Relative density of irrational rotation numbers in families of circle diffeomorphisms [J].
Afraimovich, V ;
Young, T .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :1-16
[2]  
Boyarsky A., 1997, LAWS CHAOS INVARIANT
[3]  
DEMELO W, 1993, ONE DIMENSIONAL DYNA
[4]   Strange attractors in saddle-node cycles: Prevalence and globality [J].
Diaz, LJ ;
Rocha, J ;
Viana, M .
INVENTIONES MATHEMATICAE, 1996, 125 (01) :37-74
[5]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[6]  
ILYASHENKO Y, 1999, MATH SURVEYS MONOGRA, V66
[8]   THE SCALING OF ARNOLD TONGUES FOR DIFFERENTIABLE HOMEOMORPHISMS OF THE CIRCLE [J].
JONKER, LB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (01) :1-25
[9]  
Lasota A, 1981, REND SEMIN MAT U PAD, V64, P141
[10]   AT THE OTHER SIDE OF A SADDLE-NODE [J].
MISIUREWICZ, M ;
KAWCZYNSKI, AL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (03) :605-617