Structure-Based Bayesian Sparse Reconstruction

被引:13
作者
Quadeer, Ahmed A. [1 ]
Al-Naffouri, Tareq Y. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Dept Elect Engn, Thuwal, Saudi Arabia
关键词
Bayesian methods; compressed sensing; compressive sampling; signal recovery; sparse signal reconstruction; SIGNAL RECOVERY;
D O I
10.1109/TSP.2012.2215029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity.
引用
收藏
页码:6354 / 6367
页数:14
相关论文
共 38 条
  • [1] Ahmed S. F., IEEE T COMMUN UNPUB
  • [2] Al-Naffouri TY, 2011, IEEE INT SYMP CIRC S, P2133
  • [3] Al-Naffouri T. Y., 2011, IEEE INT S INF THEOR
  • [4] Al-Naffouri T. Y., IEEE T COMMUN UNPUB
  • [5] Peak Reduction and Clipping Mitigation in OFDM by Augmented Compressive Sensing
    Al-Safadi, Ebrahim B.
    Al-Naffouri, Tareq Y.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) : 3834 - 3839
  • [6] [Anonymous], 1993, P AS C SIGN SYST COM
  • [7] Model-Based Compressive Sensing
    Baraniuk, Richard G.
    Cevher, Volkan
    Duarte, Marco F.
    Hegde, Chinmay
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 1982 - 2001
  • [8] Downlink Scheduling using Compressed Sensing
    Bhaskaran, Sibi Raj
    Davis, Linda
    Grant, Alex
    Hanly, Stephen
    Tune, Paul
    [J]. ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, : 201 - +
  • [9] Highly robust error correction by convex programming
    Candes, Emmanuel J.
    Randall, Paige A.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (07) : 2829 - 2840
  • [10] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731