Automated Texture-based Quantification of Centrilobular Nodularity and Centrilobular Emphysema in Chest CT Images

被引:36
作者
Ginsburg, Shoshana B. [1 ]
Lynch, David A. [2 ]
Bowler, Russell P. [3 ]
Schroeder, Joyce D. [2 ]
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[2] Natl Jewish Hlth, Div Radiol, Denver, CO USA
[3] Natl Jewish Hlth, Dept Med, Denver, CO USA
关键词
Emphysema; centrilobular nodularity; computer-aided diagnosis; texture analysis; OBSTRUCTIVE PULMONARY-DISEASE; INTERSTITIAL LUNG-DISEASE; HIGH-RESOLUTION CT; COMPUTED-TOMOGRAPHY; CLASSIFICATION; DIFFERENTIATION; SMOKERS;
D O I
10.1016/j.acra.2012.04.020
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Characterization of smoking-related lung disease typically consists of visual assessment of chest computed tomographic (CT) images for the presence and extent of emphysema and centrilobular nodularity (CN). Quantitative analysis of emphysema and CN may improve the accuracy, reproducibility, and efficiency of chest CT scoring. The purpose of this study was to develop a fully automated texture-based system for the detection and quantification of centrilobular emphysema (CLE) and CN in chest CT images. Materials and Methods: A novel approach was used to prepare regions of interest (ROIs) within the lung parenchyma for representation by texture features associated with the gray-level run-length and gray-level gap-length methods. These texture features were used to train a multiple logistic regression classifier to discriminate between normal lung tissue, CN or "smoker's lung," and CLE. This classifier was trained and evaluated on 24 and 71 chest CT scans, respectively. Results: During training, the classifier correctly classified 89% of ROIs depicting normal lung tissue, 74% of ROIs depicting CN, and 95% of ROIs manifesting CLE. When the performance of the classifier in quantifying extent of CN and CLE was evaluated on 71 chest CT scans, 65% of ROIs in smokers without CLE were classified as CN, compared to 31% in nonsmokers (P < .001) and 28% in smokers with CLE (P < .001). Conclusions: The texture-based framework described herein facilitates successful discrimination among normal lung tissue, CN, and CLE and can be used for the automated quantification of smoking-related lung disease.
引用
收藏
页码:1241 / 1251
页数:11
相关论文
共 37 条
[1]   A Combined Pulmonary-Radiology Workshop for Visual Evaluation of COPD: Study Design, Chest CT Findings and Concordance with Quantitative Evaluation [J].
Barr, R. Graham ;
Berkowitz, Eugene A. ;
Bigazzi, Francesca ;
Bode, Frederick ;
Bon, Jessica ;
Bowler, Russell P. ;
Chiles, Caroline ;
Crapo, James D. ;
Criner, Gerard J. ;
Curtis, Jeffrey L. ;
Dass, Chandra ;
Dirksen, Asger ;
Dransfield, Mark T. ;
Edula, Goutham ;
Erikkson, Leif ;
Friedlander, Adam ;
Galperin-Aizenberg, Maya ;
Gefter, Warren B. ;
Gierada, David S. ;
Grenier, Philippe A. ;
Goldin, Jonathan ;
Han, MeiLan K. ;
Hanania, Nicola A. ;
Hansel, Nadia N. ;
Jacobson, Francine L. ;
Kauczor, Hans-Ulrich ;
Kinnula, Vuokko L. ;
Lipson, David A. ;
Lynch, David A. ;
MacNee, William ;
Make, Barry J. ;
Mamary, A. James ;
Mann, Howard ;
Marchetti, Nathaniel ;
Mascalchi, Mario ;
McLennan, Geoffrey ;
Murphy, James R. ;
Naidich, David ;
Nath, Hrudaya ;
Newell, John D., Jr. ;
Pistolesi, Massimo ;
Regan, Elizabeth A. ;
Reilly, John J. ;
Sandhaus, Robert ;
Schroeder, Joyce D. ;
Sciurba, Frank ;
Shaker, Saher ;
Sharafkhaneh, Amir ;
Silverman, Edwin K. ;
Steiner, Robert M. .
COPD-JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2012, 9 (02) :151-159
[2]   Automated CT image evaluation of the lung:: A morphology-based concept [J].
Blechschmidt, RA ;
Werthschützky, R ;
Lörcher, U .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (05) :434-442
[3]   Emphysema: Effect of reconstruction algorithm on CT imaging measures [J].
Boedeker, KL ;
McNitt-Gray, MF ;
Rogers, SR ;
Truong, DA ;
Brown, MS ;
Gjertson, DW ;
Goldin, JG .
RADIOLOGY, 2004, 232 (01) :295-301
[4]   The GOLD classification has advanced understanding of COPD [J].
Calverley, PMA .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2004, 170 (03) :211-212
[5]   Obstructive lung diseases: Texture classification for differentiation at CT [J].
Chabat, F ;
Yang, GZ ;
Hansell, DM .
RADIOLOGY, 2003, 228 (03) :871-877
[6]   A quantification of the lung surface area in emphysema using computed tomography [J].
Coxson, HO ;
Rogers, RM ;
Whittall, KP ;
D'Yachkova, Y ;
Paré, PD ;
Sciurba, FC ;
Hogg, JC .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1999, 159 (03) :851-856
[7]   Comparison of computed density and microscopic morphometry in pulmonary emphysema [J].
Gevenois, PA ;
DeVuyst, P ;
deMaertelaer, V ;
Zanen, J ;
Jacobvitz, D ;
Cosio, MG ;
Yernault, JC .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1996, 154 (01) :187-192
[8]   Quantifying the Extent of Emphysema: Factors Associated with Radiologists' Estimations and Quantitative Indices of Emphysema Severity Using the ECLIPSE Cohort [J].
Gietema, Hester A. ;
Mueller, Nestor L. ;
Fauerbach, Paola V. Nasute ;
Sharma, Sanjay ;
Edwards, Lisa D. ;
Camp, Pat G. ;
Coxson, Harvey O. .
ACADEMIC RADIOLOGY, 2011, 18 (06) :661-671
[9]  
Guo J, 2002, 2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, P871, DOI 10.1109/ISBI.2002.1029398
[10]   Chronic Obstructive Pulmonary Disease Exacerbations in the COPDGene Study: Associated Radiologic Phenotypes [J].
Han, MeiLan K. ;
Kazerooni, Ella A. ;
Lynch, David A. ;
Liu, Lyrica X. ;
Murray, Susan ;
Curtis, Jeffrey L. ;
Criner, Gerard J. ;
Kim, Victor ;
Bowler, Russell P. ;
Hanania, Nicola A. ;
Anzueto, Antonio R. ;
Make, Barry J. ;
Hokanson, John E. ;
Crapo, James D. ;
Silverman, Edwin K. ;
Martinez, Fernando J. ;
Washko, George R. .
RADIOLOGY, 2011, 261 (01) :274-282