Square-mean weighted pseudo almost automorphic solutions for non-autonomous stochastic evolution equations

被引:41
作者
Chen, Zhang [1 ]
Lin, Wei [2 ,3 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[3] Fudan Univ, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 100卷 / 04期
基金
中国博士后科学基金;
关键词
Square-mean weighted pseudo almost automorphic; Non-autonomous stochastic evolution equations; Local Lipschitz condition; Attractive domain; ALMOST-PERIODIC-SOLUTIONS; FUNCTIONAL-DIFFERENTIAL EQUATIONS; MILD SOLUTIONS; CAUCHY-PROBLEMS; EXISTENCE; DELAY; UNIQUENESS; SPACES; FLOWS;
D O I
10.1016/j.matpur.2013.01.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce the concepts and properties of the square-mean weighted pseudo almost automorphy and the square-mean bi-almost automorphy for a stochastic process. With these preliminary settings and by virtue of the theory of the semigroups of the operators, the Banach fixed point theorem and the stochastic analysis techniques, we investigate the well-posedness of the square-mean weighted pseudo almost automorphic solutions for a general class of non-autonomous stochastic evolution equations that satisfy either global or only local Lipschitz condition. Moreover, we estimate the boundedness of attractive domain for the case where the only local Lipschitz condition is taken into account. Finally, we provide two illustrative examples to show the practical usefulness of the analytical results that we establish in the paper. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:476 / 504
页数:29
相关论文
共 57 条
[1]   Pseudo almost automorphic solutions of fractional order neutral differential equation [J].
Abbas, Syed .
SEMIGROUP FORUM, 2010, 81 (03) :393-404
[2]  
Acquistapace P., 1987, Rend. Semin. Mat. Univ. Padova, V78, P47, DOI [10.1016/0022-1236(85)90050-3, DOI 10.1016/0022-1236(85)90050-3]
[3]  
Acquistapace P., 1998, DIFFERENTIAL INTEGRA, V1, P433
[4]   Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Cuevas, Claudio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3532-3554
[5]  
AHMAD S, 1988, P AM MATH SOC, V102, P855
[6]  
[Anonymous], 1992, STOCH STOCH REP, DOI DOI 10.1080/17442509208833758
[7]  
[Anonymous], 2009, Almost periodic oscillations and waves
[8]  
[Anonymous], 2004, J DYN DIFFER EQU
[9]   Almost automorphic mild solutions to fractional differential equations [J].
Araya, Daniela ;
Lizama, Carlos .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) :3692-3705
[10]  
Arnold L., 1998, Stochastics Stochastics Rep., V64, P177