On the Integrability of a Generalized Variable-Coefficient Forced Korteweg-de Vries Equation in Fluids

被引:158
作者
Tian, Shou-Fu
Zhang, Hong-Qing
机构
[1] China Univ Min & Technol, Xuzhou 221116, Peoples R China
[2] Dalian Univ Technol, Dalian, Peoples R China
关键词
KADOMTSEV-PETVIASHVILI EQUATION; PERIODIC-WAVE SOLUTIONS; BINARY DARBOUX TRANSFORMATION; RATIONAL CHARACTERISTICS; NONLINEAR EQUATIONS; SOLITARY WAVES; KDV EQUATION; MODEL; SYSTEM;
D O I
10.1111/sapm.12026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the inhomogeneities of media taken into account, under investigation is hereby a generalized variable-coefficient forced Korteweg-de Vries (vc-fKdV) equation, which describes shallow-water waves, internal gravity waves, etc. Under an integrable constraint condition on the variable coefficients, in this paper, the complete integrability of the generalized vc-fKdV equation is proposed. By virtue of a generalization of Bells polynomials, we systematically present its bilinear representations, Backlund transformations, Lax pairs and Darboux covariant Lax pairs, which can be reduced to the ones of some integrable models, such as vcKdV model, cylindrical KdV equation, and an analytical model of tsunami generation. It is very interesting that its bilinear formulism is free for the integrable constraint condition. Besides, researching the Lax equations yield its infinitely conservation laws, all conserved densities and fluxes of them are obtained by explicit recursion formulas. Furthermore, by considering its bilinear formulism with an extra auxiliary variable, we present the soliton solutions and Riemann theta function periodic wave solutions of the equation. According to the constraint among the nonlinear, dispersive, and line-damping coefficients, we further discuss the solitonic structures and interaction properties by some graphic analysis. Finally, the relationships between the periodic wave solutions and soliton solutions are presented in detail by a limiting procedure.
引用
收藏
页码:212 / 246
页数:35
相关论文
共 57 条
[1]  
Anders I, 2000, J NONLINEAR MATH PHY, V7, P284, DOI 10.2991/jnmp.2000.7.3.3
[2]  
[Anonymous], 1991, LONDON MATH SOC LECT
[3]  
[Anonymous], 1991, DIRECT METHOD SOLITO
[4]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[5]  
BENNEY DJ, 1969, STUD APPL MATH, V48, P377
[6]   Solutions of a (2+1)-dimensional dispersive long wave equation [J].
Chen, CL ;
Tang, XY ;
Lou, SY .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036605
[7]   A CLASS OF EXACT, PERIODIC-SOLUTIONS OF NONLINEAR ENVELOPE EQUATIONS [J].
CHOW, KW .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) :4125-4137
[8]   PAINLEVE ANALYSIS AND THE COMPLETE-INTEGRABILITY OF A GENERALIZED VARIABLE-COEFFICIENT KADOMTSEV-PETVIASHVILI EQUATION [J].
CLARKSON, PA .
IMA JOURNAL OF APPLIED MATHEMATICS, 1990, 44 (01) :27-53
[9]   Solitary waves in an inhomogeneous rod composed of a general hyperelastic material [J].
Dai, HH ;
Huo, Y .
WAVE MOTION, 2002, 35 (01) :55-69
[10]  
DAVID D, 1987, STUD APPL MATH, V76, P133