Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces

被引:323
作者
Yu, Nanfang [1 ]
Genevet, Patrice [1 ,2 ,3 ]
Aieta, Francesco [1 ]
Kats, Mikhail A. [1 ]
Blanchard, Romain [1 ]
Aoust, Guillaume [1 ,4 ]
Tetienne, Jean-Philippe [1 ]
Gaburro, Zeno [1 ,5 ]
Capasso, Federico [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Texas A&M Univ, Inst Quantum Studies, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[4] Ecole Polytech, F-91128 Palaiseau, France
[5] Univ Trent, Dipartimento Fis, I-38100 Trento, Italy
基金
美国国家科学基金会;
关键词
Antenna arrays; lenses; metamaterials; optical polarization; optical surface waves; phased arrays; PANCHARATNAM-BERRY PHASE; DEPOLARIZED LIGHT-SCATTERING; SPLIT-RING-RESONATOR; BROAD-BAND; PHOTONIC METAMATERIAL; PLASMON RESONANCES; ANGULAR-MOMENTUM; LASER-BEAM; POLARIZATION; ARRAYS;
D O I
10.1109/JSTQE.2013.2241399
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional optical components rely on the propagation effect to control the phase and polarization of light beams. One can instead exploit abrupt phase and polarization changes associated with scattered light from optical resonators to control light propagation. In this paper, we discuss the optical responses of anisotropic plasmonic antennas and a new class of planar optical components ("metasurfaces") based on arrays of these antennas. To demonstrate the versatility of metasurfaces, we show the design and experimental realization of a number of flat optical components: 1) metasurfaces with a constant interfacial phase gradient that deflect light into arbitrary directions; 2) metasurfaces with anisotropic optical responses that create light beams of arbitrary polarization over a wide wavelength range; 3) planar lenses and axicons that generate spherical wavefronts and nondiffracting Bessel beams, respectively; and 4) metasurfaces with spiral phase distributions that create optical vortex beams of well-defined orbital angular momentum.
引用
收藏
页数:23
相关论文
共 139 条
[41]   Strong polarization in the optical transmission through elliptical nanohole arrays [J].
Gordon, R ;
Brolo, AG ;
McKinnon, A ;
Rajora, A ;
Leathem, B ;
Kavanagh, KL .
PHYSICAL REVIEW LETTERS, 2004, 92 (03) :4
[42]   Optical dichroism of lithographically designed silver nanoparticle films [J].
Gotschy, W ;
Vonmetz, K ;
Leitner, A ;
Aussenegg, FR .
OPTICS LETTERS, 1996, 21 (15) :1099-1101
[43]   Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles [J].
Grady, NK ;
Halas, NJ ;
Nordlander, P .
CHEMICAL PHYSICS LETTERS, 2004, 399 (1-3) :167-171
[44]  
Griffiths D. J., 1999, Introduction to Electrodynamics
[45]   Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method [J].
Grimault, A. -S. ;
Vial, A. ;
De La Chapelle, M. Lamy .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 84 (1-2) :111-115
[46]   Optical antenna: Towards a unity efficiency near-field optical probe [J].
Grober, RD ;
Schoelkopf, RJ ;
Prober, DE .
APPLIED PHYSICS LETTERS, 1997, 70 (11) :1354-1356
[47]   Depolarized light scattering from silver nanoparticles [J].
Gryczynski, Z ;
Lukomska, J ;
Lakowicz, JR ;
Matveeva, EG ;
Gryczynski, I .
CHEMICAL PHYSICS LETTERS, 2006, 421 (1-3) :189-192
[48]   High-resolution near-field Raman microscopy of single-walled carbon nanotubes -: art. no. 095503 [J].
Hartschuh, A ;
Sánchez, EJ ;
Xie, XS ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2003, 90 (09) :4
[49]   Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas [J].
Harutyunyan, Hayk ;
Volpe, Giorgio ;
Quidant, Romain ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[50]   Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics [J].
Hasman, E ;
Kleiner, V ;
Biener, G ;
Niv, A .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :328-330