The effect of quantization on the full configuration interaction quantum Monte Carlo sign problem

被引:22
|
作者
Kolodrubetz, M. H. [1 ,2 ]
Spencer, J. S. [3 ,4 ]
Clark, B. K. [1 ,5 ,6 ]
Foulkes, W. M. C. [4 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[5] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[6] Microsoft Res, Stat Q, Santa Barbara, CA 93106 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.4773819
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sign problem in full configuration interaction quantum Monte Carlo (FCIQMC) without annihilation can be understood as an instability of the psi-particle population to the ground state of the matrix obtained by making all off-diagonal elements of the Hamiltonian negative. Such a matrix, and hence the sign problem, is basis dependent. In this paper, we discuss the properties of a physically important basis choice: first versus second quantization. For a given choice of single-particle orbitals, we identify the conditions under which the fermion sign problem in the second quantized basis of antisymmetric Slater determinants is identical to the sign problem in the first quantized basis of unsymmetrized Hartree products. We also show that, when the two differ, the fermion sign problem is always less severe in the second quantized basis. This supports the idea that FCIQMC, even in the absence of annihilation, improves the sign problem relative to first quantized methods. Finally, we point out some theoretically interesting classes of Hamiltonians where first and second quantized sign problems differ, and others where they do not. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773819]
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Geometry dependence of the sign problem in quantum Monte Carlo simulations
    Iglovikov, V. I.
    Khatami, E.
    Scalettar, R. T.
    PHYSICAL REVIEW B, 2015, 92 (04)
  • [32] Amelioration for the Sign Problem: An Adiabatic Quantum Monte Carlo Algorithm
    Vaezi, Mohammad-Sadegh
    Negari, Amir-Reza
    Moharramipour, Amin
    Vaezi, Abolhassan
    PHYSICAL REVIEW LETTERS, 2021, 127 (21)
  • [33] SOLVING THE SIGN PROBLEM IN QUANTUM MONTE-CARLO DYNAMICS
    MAK, CH
    CHANDLER, D
    PHYSICAL REVIEW A, 1990, 41 (10): : 5709 - 5712
  • [34] Benchmarks of the full configuration interaction, Monte Carlo shell model, and no-core full configuration methods
    Abe, T.
    Maris, P.
    Otsuka, T.
    Shimizu, N.
    Utsuno, Y.
    Vary, J. P.
    PHYSICAL REVIEW C, 2012, 86 (05):
  • [35] Monte Carlo configuration interaction
    Greer, JC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) : 181 - 202
  • [36] Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo
    Overy, Catherine
    Booth, George H.
    Blunt, N. S.
    Shepherd, James J.
    Cleland, Deidre
    Alavi, Ali
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (24):
  • [37] Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems
    Anderson, Robert J.
    Booth, George H.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (18):
  • [38] Full configuration interaction quantum Monte Carlo for coupled electron-boson systems and infinite spaces
    Anderson, Robert J.
    Scott, Charles J. C.
    Booth, George H.
    PHYSICAL REVIEW B, 2022, 106 (15)
  • [39] Response Formalism within Full Configuration Interaction Quantum Monte Carlo: Static Properties and Electrical Response
    Samanta, Pradipta Kumar
    Blunt, Nick S.
    Booth, George H.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (07) : 3532 - 3546
  • [40] Benchmark study of Nagaoka ferromagnetism by spin-adapted full configuration interaction quantum Monte Carlo
    Yun, Sujun
    Dobrautz, Werner
    Luo, Hongjun
    Alavi, Ali
    PHYSICAL REVIEW B, 2021, 104 (23)