The effect of quantization on the full configuration interaction quantum Monte Carlo sign problem

被引:22
|
作者
Kolodrubetz, M. H. [1 ,2 ]
Spencer, J. S. [3 ,4 ]
Clark, B. K. [1 ,5 ,6 ]
Foulkes, W. M. C. [4 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[5] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[6] Microsoft Res, Stat Q, Santa Barbara, CA 93106 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.4773819
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sign problem in full configuration interaction quantum Monte Carlo (FCIQMC) without annihilation can be understood as an instability of the psi-particle population to the ground state of the matrix obtained by making all off-diagonal elements of the Hamiltonian negative. Such a matrix, and hence the sign problem, is basis dependent. In this paper, we discuss the properties of a physically important basis choice: first versus second quantization. For a given choice of single-particle orbitals, we identify the conditions under which the fermion sign problem in the second quantized basis of antisymmetric Slater determinants is identical to the sign problem in the first quantized basis of unsymmetrized Hartree products. We also show that, when the two differ, the fermion sign problem is always less severe in the second quantized basis. This supports the idea that FCIQMC, even in the absence of annihilation, improves the sign problem relative to first quantized methods. Finally, we point out some theoretically interesting classes of Hamiltonians where first and second quantized sign problems differ, and others where they do not. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773819]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The sign problem and population dynamics in the full configuration interaction quantum Monte Carlo method
    Spencer, J. S.
    Blunt, N. S.
    Foulkes, W. M. C.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (05):
  • [2] Sign problem in full configuration interaction quantum Monte Carlo: Linear and sublinear representation regimes for the exact wave function
    Shepherd, James J.
    Scuseria, Gustavo E.
    Spencer, James S.
    PHYSICAL REVIEW B, 2014, 90 (15):
  • [3] Minimising biases in full configuration interaction quantum Monte Carlo
    Vigor, W. A.
    Spencer, J. S.
    Bearpark, M. J.
    Thom, A. J. W.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (10):
  • [4] A hybrid approach to extending selected configuration interaction and full configuration interaction quantum Monte Carlo
    Blunt, Nick S.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (17):
  • [5] Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo
    Vigor, W. A.
    Spencer, J. S.
    Bearpark, M. J.
    Thom, A. J. W.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (09):
  • [6] A deterministic alternative to the full configuration interaction quantum Monte Carlo method
    Tubman, Norm M.
    Lee, Joonho
    Takeshita, Tyler Y.
    Head-Gordon, Martin
    Whaley, K. Birgitta
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (04):
  • [7] Unbiasing the initiator approximation in full configuration interaction quantum Monte Carlo
    Ghanem, Khaldoon
    Lozovoi, Alexander Y.
    Alavi, Ali
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (22):
  • [8] Preconditioning and Perturbative Estimators in Full Configuration Interaction Quantum Monte Carlo
    Blunt, Nick S.
    Thom, Alex J. W.
    Scott, Charles J. C.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (06) : 3537 - 3551
  • [9] Improved walker population control for full configuration interaction quantum Monte Carlo
    Yang, Mingrui
    Pahl, Elke
    Brand, Joachim
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (17):
  • [10] Symmetry Breaking and Broken Ergodicity in Full Configuration Interaction Quantum Monte Carlo
    Thomas, Robert E.
    Overy, Catherine
    Booth, George H.
    Alavi, Ali
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (05) : 1915 - 1922