Modelling short-rotation coppice and tree planting for urban carbon management - a citywide analysis

被引:14
|
作者
McHugh, Nicola [1 ]
Edmondson, Jill L. [1 ]
Gaston, Kevin J. [2 ]
Leake, Jonathan R. [1 ]
O'Sullivan, Odhran S. [1 ]
机构
[1] Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Exeter, Environm & Sustainabil Inst, Penryn TR10 9FE, Cornwall, England
基金
英国工程与自然科学研究理事会;
关键词
ecosystem services; GIS model; land-use; short-rotation coppice; urban biomass carbon; urban ecosystems; wood biofuel; STORAGE; BIOENERGY; BIOMASS; LAND; SEQUESTRATION; VEGETATION; BENEFITS; BALANCE; STOCKS; COSTS;
D O I
10.1111/1365-2664.12491
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The capacity of urban areas to deliver provisioning ecosystem services is commonly overlooked and underutilized. Urban populations have globally increased fivefold since 1950, and they disproportionately consume ecosystem services and contribute to carbon emissions, highlighting the need to increase urban sustainability and reduce environmental impacts of urban dwellers. Here, we investigated the potential for increasing carbon sequestration, and biomass fuel production, by planting trees and short-rotation coppice (SRC), respectively, in a mid-sized UK city as a contribution to meeting national commitments to reduce CO2 emissions. Iterative GIS models were developed using high-resolution spatial data. The models were applied to patches of public and privately owned urban greenspace suitable for planting trees and SRC, across the 73km(2) area of the city of Leicester. We modelled tree planting with a species mix based on the existing tree populations, and SRC with willow and poplar to calculate biomass production in new trees, and carbon sequestration into harvested biomass over 25years. An area of 11km(2) comprising 15% of the city met criteria for tree planting and had the potential over 25years to sequester 4200tonnes of carbon above-ground. Of this area, 58km(2) also met criteria for SRC planting and over the same period this could yield 71800tonnes of carbon in harvested biomass. The harvested biomass could supply energy to over 1566 domestic homes or 30 municipal buildings, resulting in avoided carbon emissions of 29236tonnes of carbon over 25years when compared to heating by natural gas. Together with the net carbon sequestration into trees, a total reduction of 33419 tonnes of carbon in the atmosphere could be achieved in 25years by combined SRC and tree planting across the city.Synthesis and applications. We demonstrate that urban greenspaces in a typical UK city are underutilized for provisioning ecosystem services by trees and especially SRC, which has high biomass production potential. For urban greenspace management, we recommend that planting SRC in urban areas can contribute to reducing food-fuel conflicts on agricultural land and produce renewable energy sources close to centres of population and demand. We demonstrate that urban greenspaces in a typical UK city are underutilized for provisioning ecosystem services by trees and especially SRC, which has high biomass production potential. For urban greenspace management, we recommend that planting SRC in urban areas can contribute to reducing food-fuel conflicts on agricultural land and produce renewable energy sources close to centres of population and demand.
引用
收藏
页码:1237 / 1245
页数:9
相关论文
共 50 条
  • [21] Bambusa vulgaris leaf area estimation on short-rotation coppice
    Montelatto M.B.
    Villamagua-Vergara G.C.
    De Brito C.M.
    Castanho F.
    Sartori M.M.
    De Almeida Silva M.
    Guerra S.P.S.
    Montelatto, Mariana Bonacelli (mbmontelatto@gmail.com), 1600, University of Sao Paolo (49):
  • [22] Genotypic differences in biomass production during three rotations of short-rotation coppice
    Vanbeveren, Stefan P. P.
    Ceulemans, Reinhart
    BIOMASS & BIOENERGY, 2018, 119 : 198 - 205
  • [23] Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?
    Kalt, Gerald
    Mayer, Andreas
    Theurl, Michaela C.
    Lauk, Christian
    Erb, Karl-Heinz
    Haberl, Helmut
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2019, 11 (11): : 1283 - 1297
  • [24] Effects of cutting size on the growth and wood property traits of short-rotation coppice willows
    Yang, Guo
    Li, Xiaoping
    Xu, Qiang
    Ling, Jiahao
    Yin, Tongming
    CANADIAN JOURNAL OF FOREST RESEARCH, 2020, 50 (12) : 1365 - 1372
  • [25] The long-term effect of partial defoliation on the yield of short-rotation coppice willow
    Bell, A. C.
    Clawson, S.
    Watson, S.
    ANNALS OF APPLIED BIOLOGY, 2006, 148 (02) : 97 - 103
  • [26] A prototype for horizontal long cuttings planting in Short Rotation Coppice
    Manzone, Marco
    Bergante, Sara
    Facciotto, Gianni
    Balsari, Paolo
    BIOMASS & BIOENERGY, 2017, 107 : 214 - 218
  • [27] Environmental Sustainability of Heat Produced by Poplar Short-Rotation Coppice (SRC) Woody Biomass
    Sperandio, Giulio
    Suardi, Alessandro
    Acampora, Andrea
    Civitarese, Vincenzo
    FORESTS, 2021, 12 (07):
  • [28] Neighbourhood effects on herbivory damage and chemical profiles in short-rotation coppice willows and their hybrids
    Aubona, Gibson
    Mezzomo, Priscila
    Sedio, Brian E.
    Staab, Michael
    Volf, Martin
    PHYTOCHEMISTRY, 2024, 228
  • [29] The impact of carbon trade on the management of short-rotation forest plantations
    Zhou, Wei
    Gao, Lan
    FOREST POLICY AND ECONOMICS, 2016, 62 : 30 - 35
  • [30] UPSIZED HARVESTING TECHNOLOGY FOR COPING WITH THE NEW TRENDS IN SHORT-ROTATION COPPICE
    Spinelli, R.
    Magagnotti, N.
    Picchi, G.
    Lombardini, C.
    Nati, C.
    APPLIED ENGINEERING IN AGRICULTURE, 2011, 27 (04) : 551 - 557