Multimode four-wave mixing in an unresolved sideband optomechanical system

被引:14
作者
Li, Zongyang [1 ,2 ]
You, Xiang [1 ,2 ]
Li, Yongmin [1 ,2 ]
Liu, Yong-Chun [3 ,4 ,5 ]
Peng, Kunchi [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[3] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[5] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
INDUCED TRANSPARENCY; NANOMECHANICAL RESONATORS; FREQUENCY COMB; CAVITY; OSCILLATOR; MICROWAVE; MEMBRANE; MODES; NOISE; LIGHT;
D O I
10.1103/PhysRevA.97.033806
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have studied multimode four-wavemixing (FWM) in an unresolved sideband cavity optomechanical system. The radiation pressure coupling between the cavity fields and multiple mechanical modes results in the formation of a series of tripod-type energy-level systems, which induce the multimode FWM phenomenon. The FWM mechanism enables remarkable amplification of a weak signal field accompanied by the generation of an FWM field when only a microwatt-level pump field is applied. For proper system parameters, the amplified signal and FWM fields have equal intensity with opposite phases. The gain and frequency response bandwidth of the signal field can be dynamically tuned by varying the pump intensity, optomechanical coupling strength, and additional feedback control. Under certain conditions, the frequency response bandwidth can be very narrow and reaches the level of hertz.
引用
收藏
页数:6
相关论文
共 45 条
  • [31] Observation of Radiation Pressure Shot Noise on a Macroscopic Object
    Purdy, T. P.
    Peterson, R. W.
    Regal, C. A.
    [J]. SCIENCE, 2013, 339 (6121) : 801 - 804
  • [32] SQUEEZED-STATE GENERATION BY THE NORMAL-MODES OF A COUPLED SYSTEM
    RAIZEN, MG
    OROZCO, LA
    XIAO, M
    BOYD, TL
    KIMBLE, HJ
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (02) : 198 - 201
  • [33] Experimental vacuum squeezing in rubidium vapor via self-rotation
    Ries, J
    Brezger, B
    Lvovsky, AI
    [J]. PHYSICAL REVIEW A, 2003, 68 (02): : 4
  • [34] Electromagnetically induced transparency and slow light with optomechanics
    Safavi-Naeini, A. H.
    Alegre, T. P. Mayer
    Chan, J.
    Eichenfield, M.
    Winger, M.
    Lin, Q.
    Hill, J. T.
    Chang, D. E.
    Painter, O.
    [J]. NATURE, 2011, 472 (7341) : 69 - 73
  • [35] Sankey J. C., 2010, NAT PHYS, V6707
  • [36] Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator
    Sudhir, V.
    Schilling, R.
    Fedorov, S. A.
    Schutz, H.
    Wilson, D. J.
    Kippenberg, T. J.
    [J]. PHYSICAL REVIEW X, 2017, 7 (03):
  • [37] Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane
    Thompson, J. D.
    Zwickl, B. M.
    Jayich, A. M.
    Marquardt, Florian
    Girvin, S. M.
    Harris, J. G. E.
    [J]. NATURE, 2008, 452 (7183) : 72 - U5
  • [38] Tsaturyan Y, 2017, NAT NANOTECHNOL, V12, P776, DOI [10.1038/NNANO.2017.101, 10.1038/nnano.2017.101]
  • [39] Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics
    Tsaturyan, Yeghishe
    Barg, Andreas
    Simonsen, Anders
    Villanueva, Luis Guillermo
    Schmid, Silvan
    Schliesser, Albert
    Polzik, Eugene S.
    [J]. OPTICS EXPRESS, 2014, 22 (06): : 6810 - 6821
  • [40] Measurement of the motional sidebands of a nanogram-scale oscillator in the quantum regime
    Underwood, M.
    Mason, D.
    Lee, D.
    Xu, H.
    Jiang, L.
    Shkarin, A. B.
    Borkje, K.
    Girvin, S. M.
    Harris, J. G. E.
    [J]. PHYSICAL REVIEW A, 2015, 92 (06):