Lung Nodule Classification on CT Images Using Deep Convolutional Neural Network Based on Geometric Feature Extraction

被引:4
|
作者
Venkatesan, Nikitha Johnsirani [1 ]
Nam, ChoonSung [2 ]
Shin, Dong Ryeol [1 ]
机构
[1] Sungkyunkwan Univ, Elect & Comp Engn, Suwon 440746, South Korea
[2] Inha Univ, Dept Software Convergence & Engn, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
Nodule Classification; CT; Deep Learning; Geometric; ROI; AHI; Non-Gaussian Convolutional Neural Networks; ALGORITHM;
D O I
10.1166/jmihi.2020.3122
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lung cancer detection in the earlier stage is essential to improve the survival rate of the cancer patient. Computed Tomography [CT] is a first and preferred modality of imaging for detecting cancer with an enhanced rate of diagnosis accuracy owing to its function as a single scan process. Visual inspections of the CT images are prone to error, as it is more complex to distinguish lung nodules from the background tissues which are subjective to intra and interobserver variability. Hence, computer-aided diagnosis is essential to support radiologists for accurate lung nodule prediction. To overcome this issue, we propose a deep learning approach for automatic lung cancer detection from a low dose CT images. We also propose image pre-processing using Efficient Adaptive Histogram Equalization based Region of Interest [EAHE-ROl] to enhance the CT scan and to eliminate artefacts which occur due to noise and variations of the image. The ROI is extracted from CT scans using morphological operators, thus reducing the number of false positives. We chose geometric features as they extract more geometric elements like curves, lines and points of cancer nodules. Our Non-Gaussian Convolutional Neural Networks [NG-CNN] architecture contains feature extractor and classifier, which has been applied on training, validation and test dataset. Our proposed methodology offers better-classified outcome and effectual cancer detection by outperforming the other competing methods and gives a test accuracy of 94.97% and AUC 0.896.
引用
收藏
页码:2042 / 2052
页数:11
相关论文
共 50 条
  • [1] Agile convolutional neural network for pulmonary nodule classification using CT images
    Xinzhuo Zhao
    Liyao Liu
    Shouliang Qi
    Yueyang Teng
    Jianhua Li
    Wei Qian
    International Journal of Computer Assisted Radiology and Surgery, 2018, 13 : 585 - 595
  • [2] Agile convolutional neural network for pulmonary nodule classification using CT images
    Zhao, Xinzhuo
    Liu, Liyao
    Qi, Shouliang
    Teng, Yueyang
    Li, Jianhua
    Qian, Wei
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (04) : 585 - 595
  • [3] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [4] Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network
    Wang, Qin
    Shen, Fengyi
    Shen, Linyao
    Huang, Jia
    Sheng, Weiguang
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (06) : 971 - 979
  • [5] Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network
    Qin Wang
    Fengyi Shen
    Linyao Shen
    Jia Huang
    Weiguang Sheng
    Journal of Digital Imaging, 2019, 32 : 971 - 979
  • [6] Deep Convolutional Neural Network Feature Extraction for Berry Trees Classification
    Villaruz, Jolitte A.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (03) : 226 - 233
  • [7] Lung Nodule Detection using Convolutional Neural Networks with Transfer Learning on CT Images
    Gao, Jun
    Jiang, Qian
    Zhou, Bo
    Chen, Daozheng
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2021, 24 (06) : 814 - 824
  • [8] Convolutional-Neural-Network-Based Feature Extraction for Liver Segmentation from CT Images
    Ahmad, Mubashir
    Ding, Yuan
    Qadri, Syed Furqan
    Yang, Jian
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [9] Automatic Lung Nodule Detection in CT Images Using Convolutional Neural Networks
    Shaukat, Furcian
    Javed, Kamran
    Raja, Gulistan
    Mir, Junaid
    Shahid, Muhammad Laiq Ur Rahman
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (10) : 1364 - 1373
  • [10] Convolutional neural network-based PSO for lung nodule false positive reduction on CT images
    Franca da Silva, Giovanni Lucca
    Azevedo Valente, Thales Levi
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 : 109 - 118