Non-abelian lovelock-born-infeld topological black holes

被引:0
作者
Farhangkhah, N. [1 ]
Bostani, N. [2 ,3 ]
机构
[1] Islamic Azad Univ, Shiraz Branch, Dept Phys, Shiraz, Iran
[2] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China
[3] RIAAM, Maragha, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2012年 / 36卷 / A3期
关键词
Lovelock gravity; Einstein gravity; Gauss-Bonnet gravity; Yang Mills field; Born Infeld theory; YANG-MILLS GRAVITY; GAUGE-FIELDS; STRINGS; MODEL;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The asymptotically AdS solutions of the Einstein gravity with hyperbolic horizons in the presence of So(n(n-1)/2-1,1) Yang-Mills fields governed by the non-Abelian Born-Infeld Lagrangian are presented. We investigate the properties of these solutions as well as their asymptotic behavior in various dimensions. The properties of these kinds of solutions are like the Einstein-Yang-Mills solutions. But the differences seem to appear in the role of the mass, charge and born-Infeld parameter beta, in the solutions. For example, in Einstein-Yang-Mills theory the solutions with non-negative mass cannot present an extreme black hole while that of in Einstein-Yang-Mills-Born Infeld theory can. Also, the singularities in higher dimensional Einstein-Yang-Mills theory for non-negative mass are always spacelike, while depending on choosing the parameters, we can find timelike singularities in the similar case of Einstein-Yang-Mills-Born-Infeld theory. We also extend the solutions of Einstein to the case of Gauss-Bonnet and third order Lovelock gravities. It is shown that, these solutions in the limits of beta -> 0, and beta ->infinity, represent pure gravity and gravity coupled with Yang-Mills fields, respectively.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 23 条
[1]   OPEN STRINGS IN BACKGROUND GAUGE-FIELDS [J].
ABOUELSAOOD, A ;
CALLAN, CG ;
NAPPI, CR ;
YOST, SA .
NUCLEAR PHYSICS B, 1987, 280 (04) :599-624
[2]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[3]   PARTICLE-LIKE SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
BARTNIK, R ;
MCKINNON, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :141-144
[4]   COLORED BLACK-HOLES [J].
BIZON, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2844-2847
[5]   Foundations of the new field theory. [J].
Born, M ;
Infeld, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1934, 144 (A852) :0425-0451
[6]   TOPOLOGICAL BLACK HOLES OF (n+1)-DIMENSIONAL EINSTEIN YANG MILLS GRAVITY [J].
Bostani, N. ;
Dehghani, M. H. .
MODERN PHYSICS LETTERS A, 2010, 25 (18) :1507-1519
[7]   STRING-GENERATED GRAVITY MODELS [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW LETTERS, 1985, 55 (24) :2656-2660
[8]   Born-Infeld black holes in (A)dS spaces [J].
Cai, RG ;
Pang, DW ;
Wang, A .
PHYSICAL REVIEW D, 2004, 70 (12) :124034-1
[9]   TOPOLOGICAL BLACK HOLES OF GAUSS-BONNET-YANG-MILLS GRAVITY [J].
Dehghani, M. H. ;
Bostani, N. ;
Pourhasan, R. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (07) :1107-1117
[10]   NON-LINEAR ELECTRODYNAMICS FROM QUANTIZED STRINGS [J].
FRADKIN, ES ;
TSEYTLIN, AA .
PHYSICS LETTERS B, 1985, 163 (1-4) :123-130