A new method for producing "Lotus Effect" on a biomimetic shark skin

被引:114
作者
Liu, Yunhong [1 ]
Li, Guangji [1 ]
机构
[1] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomimetic surface; Shark skin; Microreplication; Lotus effect; Superhydrophobicity; ENGINEERED ANTIFOULING MICROTOPOGRAPHIES; SUPERHYDROPHOBIC SURFACES; WETTABILITY; RESISTANCE; FLOW;
D O I
10.1016/j.jcis.2012.08.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nature has long been an important source of inspiration for mankind to develop artificial ways to mimic the remarkable properties of biological systems. In this work, a new method was explored to fabricate a superhydrophobic dual-biomimetic surface comprising both the shark-skin surface morphology and the lotus leaf-like hierarchical micro/nano-structures. The biomimetic surface possessing shark-skin pattern microstructure was first fabricated by microreplication of shark-skin surface based on PDMS; and then it was treated by flame to form hierarchical micro/nano-structures that can produce lotus effect. The fabricated biomimetic surfaces were characterized with scanning electron microscopy (SEM), water contact angle measurements and liquid drop impact experiments. The results show that the fabricated dual-biomimetic surface possesses both the vivid shark-skin surface morphology and the lotus leaf-like hierarchical micro/nano-structures. It can exhibit excellent superhydrophobicity that the contact angle is as high as 160 degrees and maintain its robustness of the superhydrophobicity during the droplet impact process at a relatively high Weber number. The mechanism of the micromorphology evolution and microstructural changes on the biomimetic shark-skin surface was also discussed here in the process of flame treatment. This method is expected to be developed into a novel and feasible biomimetic surface manufacturing technique. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 39 条
[1]   Engineering - Shark skin and other solutions [J].
Ball, P .
NATURE, 1999, 400 (6744) :507-+
[2]   Experiments with three-dimensional riblets as an idealized model of shark skin [J].
Bechert, DW ;
Bruse, M ;
Hage, W .
EXPERIMENTS IN FLUIDS, 2000, 28 (05) :403-412
[3]   Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction [J].
Bhushan, Bharat ;
Jung, Yong Chae .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (01) :1-108
[4]   Pearl drops [J].
Bico, J ;
Marzolin, C ;
Quéré, D .
EUROPHYSICS LETTERS, 1999, 47 (02) :220-226
[5]   Extreme resistance of superhydrophobic surfaces to impalement: Reversible electrowetting related to the impacting/bouncing drop test [J].
Brunet, P. ;
Lapierre, F. ;
Thomy, V. ;
Coffinier, Y. ;
Boukherroub, R. .
LANGMUIR, 2008, 24 (19) :11203-11208
[6]   Shark Skin Inspired Riblet Coatings for Aerodynamically Optimized High Temperature Applications in Aeroengines [J].
Buettner, Claudia C. ;
Schulz, Uwe .
ADVANCED ENGINEERING MATERIALS, 2011, 13 (04) :288-295
[7]   Engineered antifouling microtopographies - correlating wettability with cell attachment [J].
Carman, ML ;
Estes, TG ;
Feinberg, AW ;
Schumacher, JF ;
Wilkerson, W ;
Wilson, LH ;
Callow, ME ;
Callow, JA ;
Brennan, AB .
BIOFOULING, 2006, 22 (01) :11-21
[8]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[9]   An ultraviolet-curable mold for sub-100-nm lithography [J].
Choi, SJ ;
Yoo, PJ ;
Baek, SJ ;
Kim, TW ;
Lee, HH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :7744-7745
[10]   Evaluation of micro-replication technology using silicone rubber molds and its applications [J].
Chung, S ;
Im, Y ;
Kim, H ;
Jeong, H ;
Dornfeld, DA .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2003, 43 (13) :1337-1345