Optimization of Electrochemical Performance of a Solid Oxide Fuel Cell using Artificial Neural Network

被引:0
|
作者
Ansari, M. A. [1 ]
Rizvi, Syed Mohd Aijaz [1 ]
Khan, Shuab [1 ]
机构
[1] Gautam Buddha Univ, Sch Engn, Greater Noida, UP, India
来源
2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT) | 2016年
关键词
Optimization; Artificial Neural Network (ANN); Solid Oxide Fuel Cell (SOFC);
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A neural network model is developed for prediction of solid oxide fuel cell performance. The back propagation algorithm is used for the cell voltage and power prediction. As the model is developed, the neural network model's prediction is presented and compared with the physical non-linear model results. Hence, the neural network structure based on the Levenberg Marquardt back propagation algorithm has been concluded to be more appropriate for modeling the dependencies of the non-linearity on the performance of solid oxide fuel cell.
引用
收藏
页码:4230 / 4234
页数:5
相关论文
共 50 条
  • [1] Artificial neural network modeling and optimization of the Solid Oxide Fuel Cell parameters using grey wolf optimizer
    Chen, Xinxiao
    Yi, Zhuo
    Zhou, Yiyu
    Guo, Peixi
    Farkoush, Saeid Gholami
    Niroumandi, Hossein
    ENERGY REPORTS, 2021, 7 : 3449 - 3459
  • [2] Optimization of three-dimensional electrical performance in a solid oxide fuel cell stack by a neural network
    Wang, Shih-Bin
    Yuan, Ping
    Liu, Syu-Fang
    Kuo, Ming-Jun
    World Academy of Science, Engineering and Technology, 2009, 56 : 482 - 492
  • [3] Stack performance classification and fault diagnosis optimization of solid oxide fuel cell system based on bayesian artificial neural network and feature selection
    Wu, Xiao-long
    Mei, Juan
    Xu, Yuan-wu
    Cheng, Yongjun
    Peng, Jingxuan
    Chi, Bo
    Wang, Zhuo
    Li, Xi
    JOURNAL OF POWER SOURCES, 2024, 620
  • [4] Electrochemical machining parameter optimization and prediction of performance using artificial neural network
    Saranya, K.
    Haribabu, K.
    Venkatesh, T.
    Saravanan, K. G.
    Maranan, Ramya
    Rajan, N.
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 18 (07): : 5015 - 5025
  • [5] PERFORMANCE ESTIMATION OF DIRECT METHANOL FUEL CELL USING ARTIFICIAL NEURAL NETWORK
    Biswas, M. A. Rafe
    Robinson, Melvin D.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 6B, 2016,
  • [6] Optimization of physical parameters of solid oxide fuel cell electrode using electrochemical model
    Jo, Dong Hyun
    Chun, Jeong Hwan
    Park, Ki Tae
    Hwang, Ji Won
    Lee, Jeong Yong
    Jung, Hyun Wook
    Kim, Sung Hyun
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 28 (09) : 1844 - 1850
  • [7] Optimization of physical parameters of solid oxide fuel cell electrode using electrochemical model
    Dong Hyun Jo
    Jeong Hwan Chun
    Ki Tae Park
    Ji Won Hwang
    Jeong Yong Lee
    Hyun Wook Jung
    Sung Hyun Kim
    Korean Journal of Chemical Engineering, 2011, 28 : 1844 - 1850
  • [8] Electrochemical performance study of solid oxide fuel cell using lattice Boltzmann method
    Xu, Han
    Dang, Zheng
    Bai, Bo-Feng
    ENERGY, 2014, 67 : 575 - 583
  • [9] Artificial neural network model of a short stack solid oxide fuel cell based on experimental data
    Razbani, Omid
    Assadi, Mohsen
    JOURNAL OF POWER SOURCES, 2014, 246 : 581 - 586
  • [10] Modeling and Optimization of Anode-Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm
    Bozorgmehri, S.
    Hamedi, M.
    FUEL CELLS, 2012, 12 (01) : 11 - 23