SVM-BASED TEXTURE CLASSIFICATION IN OPTICAL COHERENCE TOMOGRAPHY

被引:0
作者
Anantrasirichai, N. [1 ]
Achim, Alin [1 ]
Morgan, James E. [3 ]
Erchova, Irina [3 ]
Nicholson, Lindsay [2 ]
机构
[1] Univ Bristol, Visual Informat Lab, Bristol BS8 1TH, Avon, England
[2] Univ Bristol, Sch Cellular & Mol Med, Bristol BS8 1TH, Avon, England
[3] Cardiff Univ, Sch Optometry & Vis Sci, Cardiff CF10 3AX, S Glam, Wales
来源
2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2013年
基金
英国工程与自然科学研究理事会;
关键词
classification; support vector machine; optical coherence tomography; texture;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper describes a new method for automated texture classification for glaucoma detection using high resolution retinal Optical Coherence Tomography (OCT). OCT is a non-invasive technique that produces cross-sectional imagery of ocular tissue. Here, we exploit information from OCT images, specifically the inner retinal layer thickness and speckle patterns, to detect glaucoma. The proposed method relies on support vector machines (SVM), while principal component analysis (PCA) is also employed to improve classification performance. Results show that texture features can improve classification accuracy over what is achieved using only layer thickness as existing methods currently do.
引用
收藏
页码:1332 / 1335
页数:4
相关论文
共 11 条
  • [1] Statistics and reduction of speckle in optical coherence tomography
    Bashkansky, M
    Reintjes, J
    [J]. OPTICS LETTERS, 2000, 25 (08) : 545 - 547
  • [2] LIBSVM: A Library for Support Vector Machines
    Chang, Chih-Chung
    Lin, Chih-Jen
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [3] Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2Akita diabetic mice
    Gastinger, Matthew J.
    Kunselman, Allen R.
    Conboy, Erin E.
    Bronson, Sarah K.
    Barber, Alistair J.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (06) : 2635 - 2642
  • [4] Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding
    Liu, Yu-Ying
    Chen, Mei
    Ishikawa, Hiroshi
    Wollstein, Gadi
    Schuman, Joel S.
    Rehg, James M.
    [J]. MEDICAL IMAGE ANALYSIS, 2011, 15 (05) : 748 - 759
  • [5] Mayer M.A., 2009, AUTOMATED GLAUCOMA C
  • [6] Combined morphological-spectral unsupervised image segmentation
    O'Callaghan, RJ
    Bull, DR
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (01) : 49 - 62
  • [7] Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    Ojala, T
    Pietikäinen, M
    Mäenpää, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) : 971 - 987
  • [8] Three-Dimensional Analysis of Retinal Layer Texture: Identification of Fluid-Filled Regions in SD-OCT of the Macula
    Quellec, Gwenole
    Lee, Kyungmoo
    Dolejsi, Martin
    Garvin, Mona K.
    Abramoff, Michael D.
    Sonka, Milan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (06) : 1321 - 1330
  • [9] Three-Dimensional Imaging of the Macular Retinal Nerve Fiber Layer in Glaucoma with Spectral-Domain Optical Coherence Tomography
    Sakamoto, Atsushi
    Hangai, Masanori
    Nukada, Masayuki
    Nakanishi, Hideo
    Mori, Satoshi
    Kotera, Yuriko
    Inoue, Ryo
    Yoshimura, Nagahisa
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (10) : 5062 - 5070
  • [10] The dual-tree complex wavelet transform
    Selesnick, IW
    Baraniuk, RG
    Kingsbury, NG
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2005, 22 (06) : 123 - 151