Majorana nanowires for topological quantum computation

被引:60
作者
Marra, Pasquale [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Keio Univ, Dept Phys, 4-1-1 Hiyoshi, Yokohama, Kanagawa 2238521, Japan
[3] Keio Univ, Res & Educ Ctr Nat Sci, 4-1-1 Hiyoshi, Yokohama, Kanagawa 2238521, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
SEMICONDUCTOR-SUPERCONDUCTOR NANOWIRE; NON-ABELIAN STATISTICS; BIAS CONDUCTANCE PEAK; ANDREEV BOUND-STATES; RANDOM-MATRIX THEORY; ZERO-MODES; ELECTRONIC-PROPERTIES; CONDENSED MATTER; COULOMB-BLOCKADE; MAGNETIC-FIELD;
D O I
10.1063/5.0102999
中图分类号
O59 [应用物理学];
学科分类号
摘要
Majorana bound states are quasiparticle excitations localized at the boundaries of a topologically nontrivial superconductor. They are zero-energy, charge-neutral, particle-hole symmetric, and spatially-separated end modes which are topologically protected by the particle-hole symmetry of the superconducting state. Due to their topological nature, they are robust against local perturbations and, in an ideal environment, free from decoherence. Furthermore, unlike ordinary fermions and bosons, the adiabatic exchange of Majorana modes is noncommutative, i.e., the outcome of exchanging two or more Majorana modes depends on the order in which exchanges are performed. These properties make them ideal candidates for the realization of topological quantum computers. In this tutorial, I will present a pedagogical review of 1D topological superconductors and Majorana modes in quantum nanowires. I will give an overview of the Kitaev model and the more realistic Oreg-Lutchyn model, discuss the experimental signatures of Majorana modes, and highlight their relevance in the field of topological quantum computation. This tutorial may serve as a pedagogical and relatively self-contained introduction for graduate students and researchers new to the field, as well as an overview of the current state-of-the-art of the field and a reference guide to specialists. (C) 2022 Author(s).
引用
收藏
页数:59
相关论文
共 617 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]   Milestones Toward Majorana-Based Quantum Computing [J].
Aasen, David ;
Hell, Michael ;
Mishmash, Ryan V. ;
Higginbotham, Andrew ;
Danon, Jeroen ;
Leijnse, Martin ;
Jespersen, Thomas S. ;
Folk, Joshua A. ;
Marcus, Charles M. ;
Flensberg, Karsten ;
Alicea, Jason .
PHYSICAL REVIEW X, 2016, 6 (03)
[3]   A perspective on semiconductor-based superconducting qubits [J].
Aguado, Ramon .
APPLIED PHYSICS LETTERS, 2020, 117 (24)
[4]   Majorana qubits for topological quantum computing [J].
Aguado, Ramon ;
Kouwenhoven, Leo P. .
PHYSICS TODAY, 2020, 73 (06) :45-50
[5]   Majorana quasiparticles in condensed matter [J].
Aguado, Ramon .
RIVISTA DEL NUOVO CIMENTO, 2017, 40 (11) :523-593
[6]   Quantized Conductance at the Majorana Phase Transition in a Disordered Superconducting Wire [J].
Akhmerov, A. R. ;
Dahlhaus, J. P. ;
Hassler, F. ;
Wimmer, M. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (05)
[7]   Electrically Detected Interferometry of Majorana Fermions in a Topological Insulator [J].
Akhmerov, A. R. ;
Nilsson, Johan ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (21)
[8]   Transport Signatures of Quasiparticle Poisoning in a Majorana Island [J].
Albrecht, S. M. ;
Hansen, E. B. ;
Higginbotham, A. P. ;
Kuemmeth, F. ;
Jespersen, T. S. ;
Nygard, J. ;
Krogstrup, P. ;
Danon, J. ;
Flensberg, K. ;
Marcus, C. M. .
PHYSICAL REVIEW LETTERS, 2017, 118 (13)
[9]   Exponential protection of zero modes in Majorana islands [J].
Albrecht, S. M. ;
Higginbotham, A. P. ;
Madsen, M. ;
Kuemmeth, F. ;
Jespersen, T. S. ;
Nygard, J. ;
Krogstrup, P. ;
Marcus, C. M. .
NATURE, 2016, 531 (7593) :206-+
[10]   Extended Kitaev chain with longer-range hopping and pairing [J].
Alecce, Antonio ;
Dell'Anna, Luca .
PHYSICAL REVIEW B, 2017, 95 (19)