Influence of crystallite size and surface morphology on electrochemical properties of annealed TiO2 nanotubes

被引:68
作者
Munirathinam, Balakrishnan [1 ]
Pydimukkala, Haveela [1 ]
Ramaswamy, Narayanan [2 ]
Neelakantan, Lakshman [1 ]
机构
[1] IIT Madras, Dept Met & Mat Engn, Madras, Tamil Nadu, India
[2] VIT Univ, Sch Mech & Bldg Sci, Madras, Tamil Nadu, India
关键词
Anodization; TiO2; nanotubes; Crystallite size; Impedance; Polarization; CORROSION BEHAVIOR; TITANIA NANOTUBES; VOIGT-FUNCTION; ANODIZATION PARAMETERS; HYDROXYAPATITE GROWTH; ANODIC GROWTH; OXIDE; ELECTROLYTE; FABRICATION; TI-6AL-4V;
D O I
10.1016/j.apsusc.2015.08.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The current study investigates the effect of crystallite size and surface morphology of TiO2 nanotubes on their wettability and electrochemical properties. Self-organized amorphous TiO2 nanotubes were synthesized by anodization process in an acidic (0.5 wt% HF) and a neutral electrolyte (1 M Na2SO4 + 0.5 wt% NaF). Subsequently, the nanotubes were annealed at 450 degrees C to achieve crystalline phase. Scanning electron microscope micrographs revealed that nanotubes formed from the neutral bath are four times longer (1.2 mu m) than the ones synthesized from the acidic bath (325 nm). The charge consumed during anodization is greater under the acidic conditions implying the severity of the attack on the nanotubes by the electrolyte. X-Ray diffraction analysis showed that after annealing TiO2 crystallizes in the tetragonal lattice as anatase structure. Peak fitting method for line profile analysis was employed to estimate the crystallite size and the micro strain. The oxide nanotubes formed in neutral medium showed smaller crystallite size (28.91 nm) than the one formed in acidic medium (4337 nm). Wettability measurements showed wetting angles <60, indicating hydrophilic nature of the anatase nanotubes. Further, both the dimensional aspect (i.e., length and diameter of nanotubes) and the crystallite size have significant effect on the hydrophilic behavior. Electrochemical impedance spectroscopy in a simulated body fluid environment confirmed that structural changes in the oxide layer influence the electrochemical properties. Polarization studies demonstrated that crystallite size affects the passive behavior of the nanotubes. Smaller crystallite size (28.91 nm) lowers the passive current density (0.11 mu A cm(-2)), indicating the good protectiveness. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1245 / 1253
页数:9
相关论文
共 55 条
[41]  
2-C
[42]   An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications [J].
Saji, Viswanathan S. ;
Choe, Han Cheol ;
Brantley, William A. .
ACTA BIOMATERIALIA, 2009, 5 (06) :2303-2310
[43]  
Scully J.R., 1993, ASTM, P173
[44]   Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions [J].
Shukla, AK ;
Balasubramaniam, R ;
Bhargava, S .
INTERMETALLICS, 2005, 13 (06) :631-637
[45]   Anodic growth of TiO2 nanopore arrays at various temperatures [J].
Sulka, Grzegorz D. ;
Kapusta-Kolodziej, Joanna ;
Brzozka, Agnieszka ;
Jaskula, Marian .
ELECTROCHIMICA ACTA, 2013, 104 :526-535
[46]   Voltage oscillations and morphology during the galvanostatic formation of self-organized TiO2 nanotubes [J].
Taveira, LV ;
Macak, JM ;
Sirotna, K ;
Dick, LFP ;
Schmuki, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (04) :B137-B143
[47]   Hydroxyapatite growth on anodic TiO2 nanotubes [J].
Tsuchiya, Hiroaki ;
Macak, Jan M. ;
Mueller, Lenka ;
Kunze, Julia ;
Mueller, Frank ;
Greil, Peter ;
Virtanen, Sannakaisa ;
Schmuki, Patrik .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 77A (03) :534-541
[48]   Crystallization and high-temperature structural stability of titanium oxide nanotube arrays [J].
Varghese, OK ;
Gong, DW ;
Paulose, M ;
Grimes, CA ;
Dickey, EC .
JOURNAL OF MATERIALS RESEARCH, 2003, 18 (01) :156-165
[49]   Influence of anodic conditions on self-ordered growth of highly aligned titanium oxide nanopores [J].
Vega, V. ;
Prida, Victor M. ;
Hernandez-Velez, M. ;
Manova, E. ;
Aranda, P. ;
Ruiz-Hitzky, E. ;
Vazquez, Manuel .
NANOSCALE RESEARCH LETTERS, 2007, 2 (07) :355-363
[50]  
Willert HG, 1996, CLIN ORTHOP RELAT R, P51